

Решения Oventrop

для регулирования систем вентиляции и центрального кондиционирования

Стр.

2	Содержание
3	Введение
4	Инструкция по работе с альбомом схем
5-6	Таблицы быстрого подбора схемы узла обвязки отопительно-вентиляционного оборудования
7	Схема 1
8	Схема 2
9	Схема 3
10	Схема 4
11	Схема 5
12	Схема 6
13	Схема 7
14	Схема 8
15	Схема 9
16-17	Экспликация оборудования на схемах узлов обвязки отопительно-вентиляционного оборудования
18-19	Схемы 10-14. Узлы обвязки фанкойлов
20	Экспликация оборудования на схемах узлов обвязки фанкойлов
21-22	Таблица быстрого подбора типоразмеров арматуры для воды
23-25	Пример расчета системы холодоснабжения
26	Итоги расчета системы холодоснабжения
28-29	Присоединительные узлы «Flypass 4TZ»
30-31	Комбинированные резьбовые балансировочные вентили серии «Cocon QTZ»
32-33	Комбинированные резьбовые балансировочные вентили серии «Cocon QTR»
34-35	Комбинированные резьбовые балансировочные вентили серии «Cocon QFC»
36	Ручные резьбовые балансировочные вентили серии «Hydrocontrol VTR»
37	Ручные фланцевые балансировочные вентили серии «Hydrocontrol VFS»
38-39	Регулирующие 2-ходовые резьбовые вентили «Cocon 2TZ»
40-41	Регулирующие 2-ходовые резьбовые вентили «Hycocon HTZ»
42	Регулирующие 2- и 3-ходовые фланцевые вентили
43	Регулирующие 3-ходовые резьбовые распределительные вентили «Tri-D TR»
44	Регулирующие 3-ходовые резьбовые распределительные вентили «Tri-M TR»
45	Регулирующие 3-ходовые 4-портовые резьбовые распределительные вентили «Tri-D Plus TB»
46-47	Регулирующие 3-ходовые резьбовые смесительные/распределительные вентили «Tri-CTR»
48	Регулирующие 3-ходовые 4-портовые резьбовые распределительные вентили «Tri-M Plus TR»
49	Шаровые резьбовые краны «Optibal»
50-52	Дисковые поворотные затворы межфланцевого исполнения
53	Резьбовые сетчатые фильтры со сливной пробкой
54 	Фланцевые сетчатые фильтры со сливной пробкой
55 50	Резьбовые обратные клапаны
56 57	Фланцевые обратные клапаны
57 50	Сливные шаровые краны «Optiflex»
58 59	Автоматические воздухоотводчики
60	Краны под манометры Колпачковые клапаны «Expa-Con» для подключения расширительных баков
62-63	колпачковые клапаны «Expa-Con» для подключения расширительных оаков Комбинация регулирующих вентилей и приводов (таблица подборов приводов)

Данное издание предназначено для специалистов по проектированию систем тепло- и холодоснабжения потребителей в системах вентиляции и центрального кондиционирования. В альбоме представлены схемы обвязки потребителей, таблицы быстрого подбора типоразмеров трубопроводной арматуры, пример расчета с применением программного обеспечения, а также технические данные применяемого оборудования.

Дополнением к печатному изданию является библиотека чертежей, приведенных в альбоме схем обвязки

потребителей в формате .dwg, которая может быть предоставлена специалистам по запросу.

Представленная в альбоме схем информация является интеллектуальной собственностью компании Oventrop. Любое копирование содержащейся информации без предварительного разрешения Представительства компании Oventrop в Российской Федерации запрещено.

Компания Oventrop выражает признательность всем специалистам, принимавшим участие в рецензировании данного издания. Мы надеемся, что предоставленная информация оптимизирует трудозатраты специалистов на проектирование инженерных систем зданий и сооружений

Ваши предложения, замечания и рекомендации можно направлять по факсу (495) 984-54-51 или электронной почте info@oventrop.ru

В целях удобства работы с данным изданием предлагаем Вам ознакомиться с инструкцией по подбору необходимой схемы узла обвязки потребителя с соответствующей спецификацией оборудования Oventrop на основе нижеприведенного примера.

Задание:

Подобрать узел обвязки воздухонагревателя первого подогрева вентиляционной приточной установки (ВПУ).

Исходные данные:

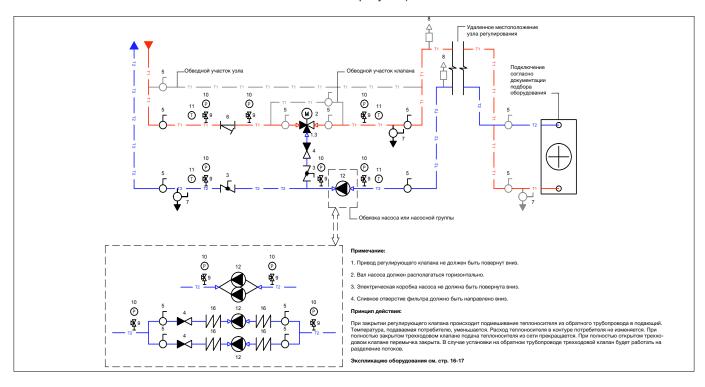
Теплоноситель: вода

Номинальная мощность: 100 кВт Температурный график: 95-70 °C Расход в контуре источника: постоян-

Расход в контуре потребителя: переменный

Решение:

Пользуясь таблицами быстрого подбора принципиальной схемы узла обвязки потребителя на стр. 5-6 на основе исходных данных выбираем схему 1 на стр. 7.


Далее переходим на стр.16-17 с экспликацией оборудования, обозначенного на схеме 1. Копируем в спецификацию оборудования все компоненты узла обвязки с учетом потребного количества изделий в соответствии со

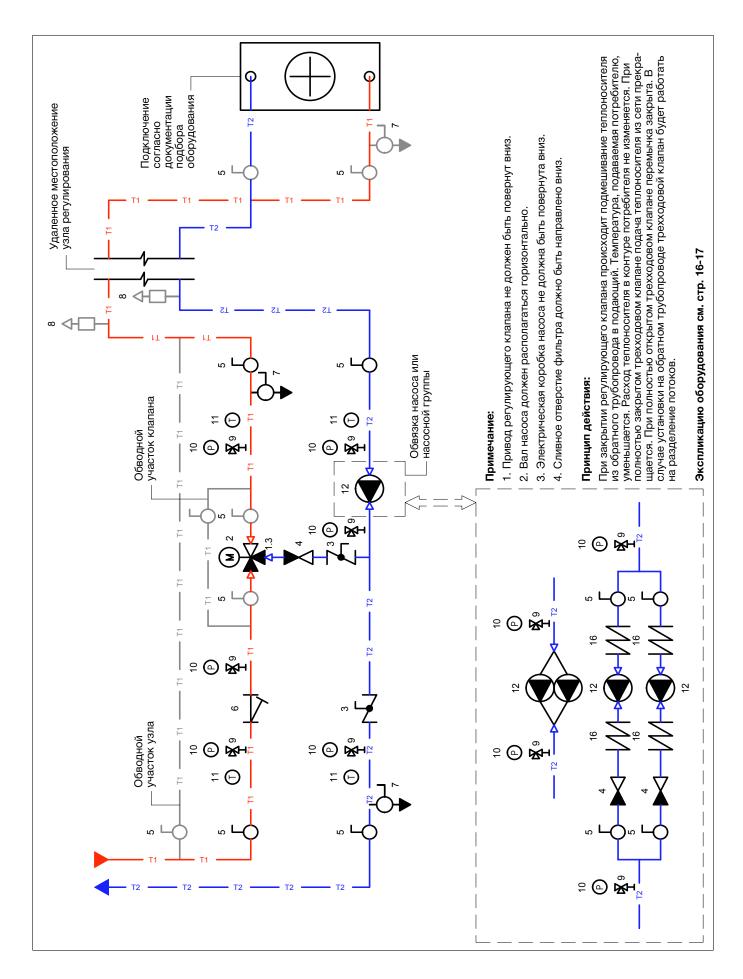
Типоразмеры трубопроводной арматуры определяем с учетом номинальной мощности потребителя и температурного графика сети на стр.21.

Для идентификации артикулов изделий, определив их типоразмеры, пользуемся каталогом продукции Oventrop 2014 года (при использовании базы схем обвязок ПВУ это не требуется).

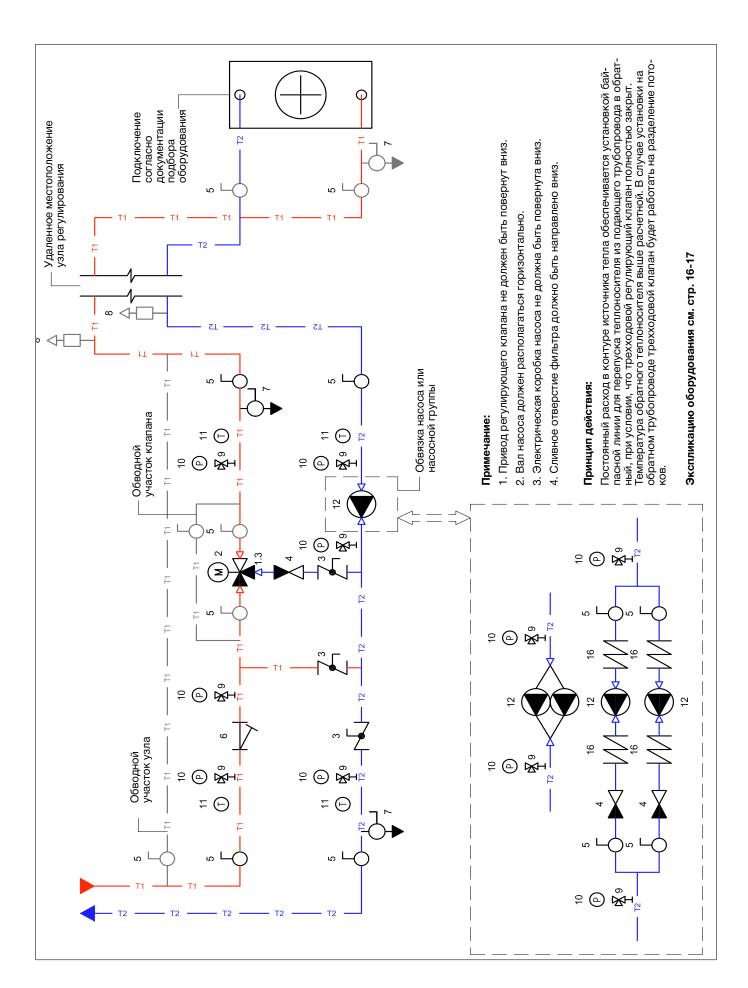
Решение о наличии обводных участков регулирующего вентиля с сервоприводом и подающей линии узла обвязки, а также оснащении насосного узла, типоразмеры и количество шаровых кранов для дренажа и автоматических воздухоотводчиков, принимается проектировщиком самостоятельно. В нашем примере обводные участки не используем, резервный насос не устанавливаем, циркуляционный насос виброкомпенсаторами, шаровыми кранами и обратными клапанами не обвязываем. Напряжение питания и тип управляющего сигнала сервопривода регулирующего вентиля согласовывается с проектом автоматизации и систем управления.

В результате получаем принципиальную схему со спецификацией, выбрать которую можно в электронной библиотеке(базе схем обвязок ВПУ).

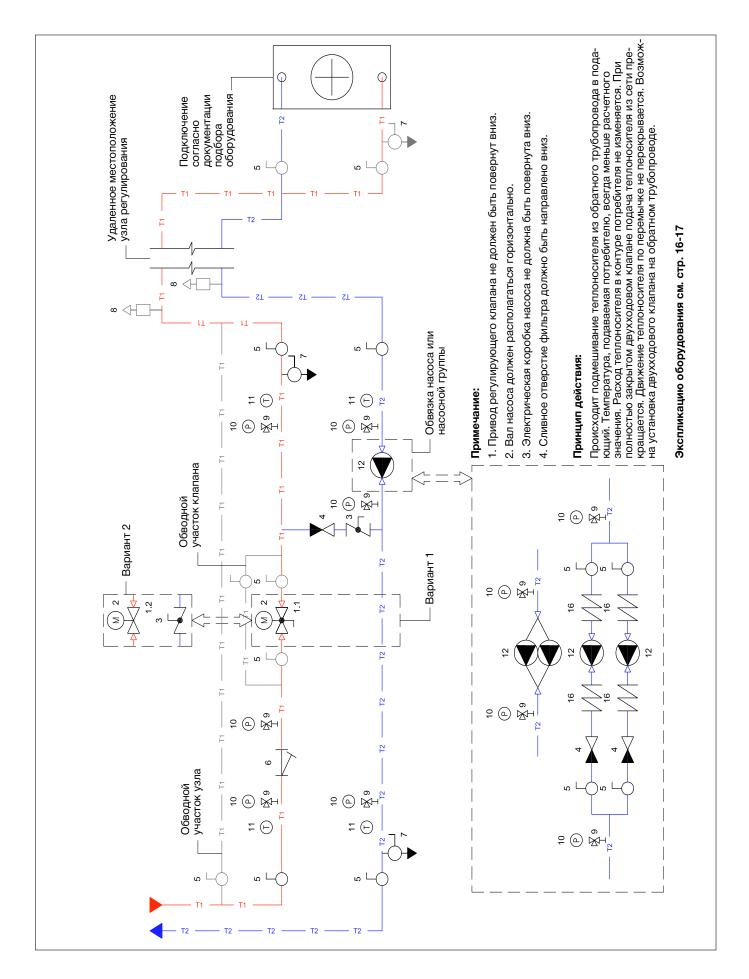
N₂	Наименование изделия	DN	Артикул	Кол-во, шт.
1	Кран шаровой Optibal, резьбовое соединение, латунный	40	107 60 12	6
2	Фильтр сетчатый, резьбовое соединение, бронзовый	40	112 00 12	1
3	Балансировочный вентиль ручной Hydrocontrol VTR, резьбовое соединение, бронзовый	25	106 01 08	2
4	Регулирующий вентиль под сервопривод Tri-M TR смесительный, резьбовой, бронзовый	25	113 17 08	1
5	Сервопривод для регулирующего вентиля Tri-M TR 3-позиционный, питание 230 В	-	101 27 03	1
6	Кран шаровой Optiflex со штуцером для шланга, резьбовое соединение, латунный	15	103 33 14	3
7	Автоматический воздухоотводчик с автозапором, резьбовое соединение, латунный	15	108 83 04	2
8	Кран трехходовой под манометр с фланцем для испытаний 25 x 60 мм, резьбовое соединение, латунный	15	111 02 04	6
9	Циркуляционный насос	-		1
10	Манометр показывающий	-		6
11	Термометр показывающий	-		4

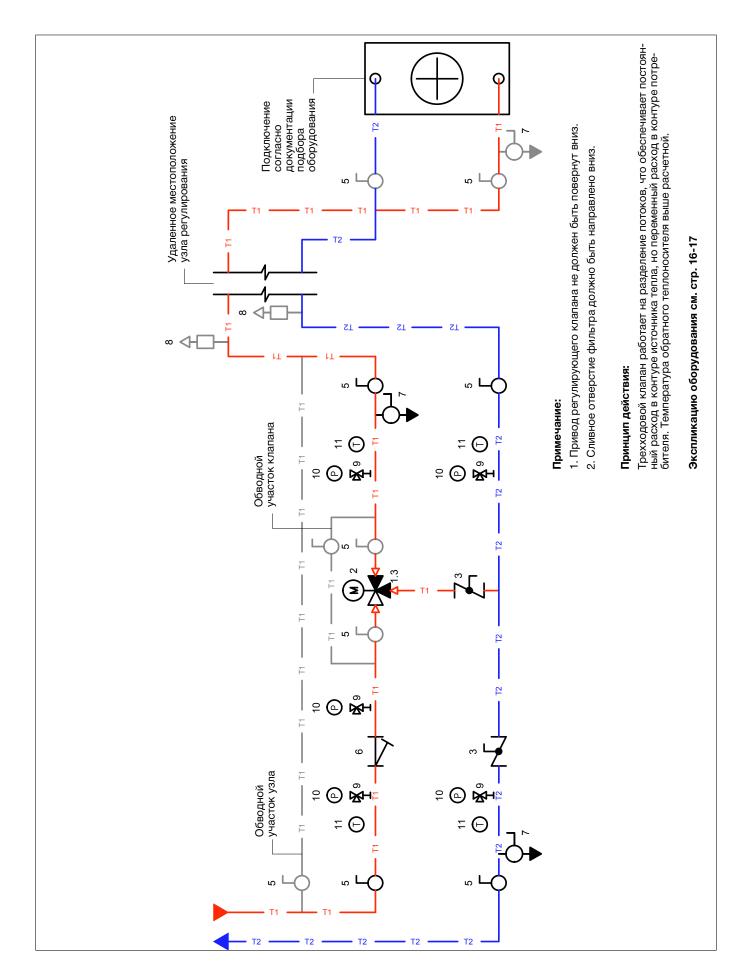


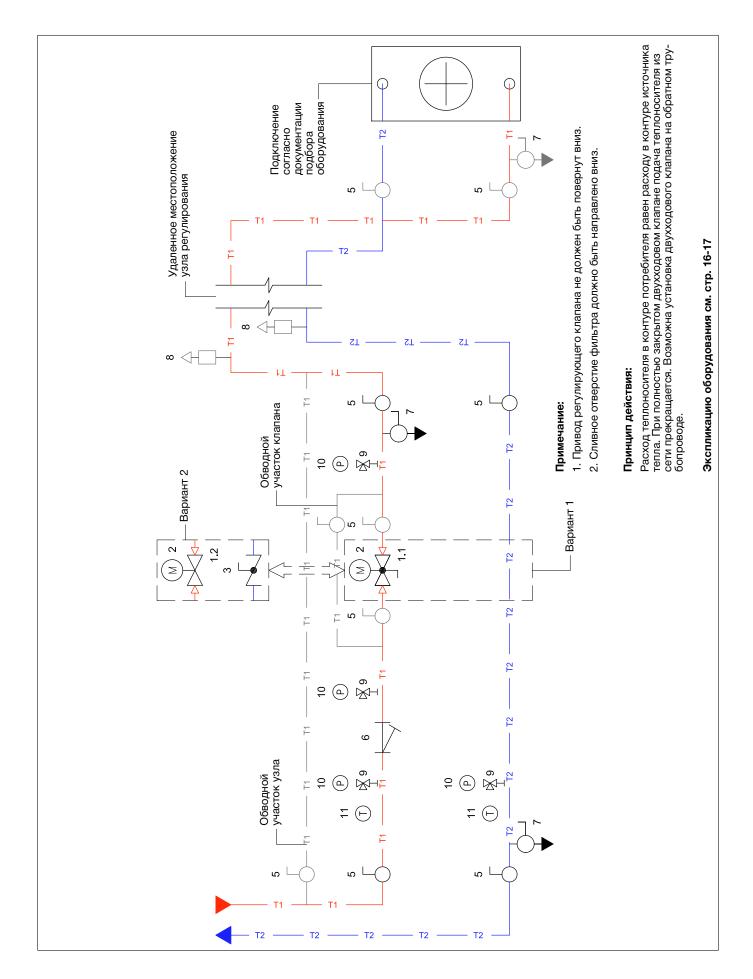
					Потребитель		
Наименование	Блок-схема	L G G		Теплоснабжение			,
			Воздухонагреватель первого подогрева	Воздухонагреватель второго подогрева	Воздушная тепловая завеса	Воздухоохладитель	рекуператор
Схема 1		7	+	-	-	-	
Схема 2	3	8	+	-	-	-	1
Схема 3	3	6	+	-	-	1	-
Схема 4		10	-	+	+	-	-
Схема 5			-	+	+	-	-
Схема 6		12	-	-	-	+	
Схема 7		13	-		-	+	
Схема 8		41			-		+
Схема 9		15					+

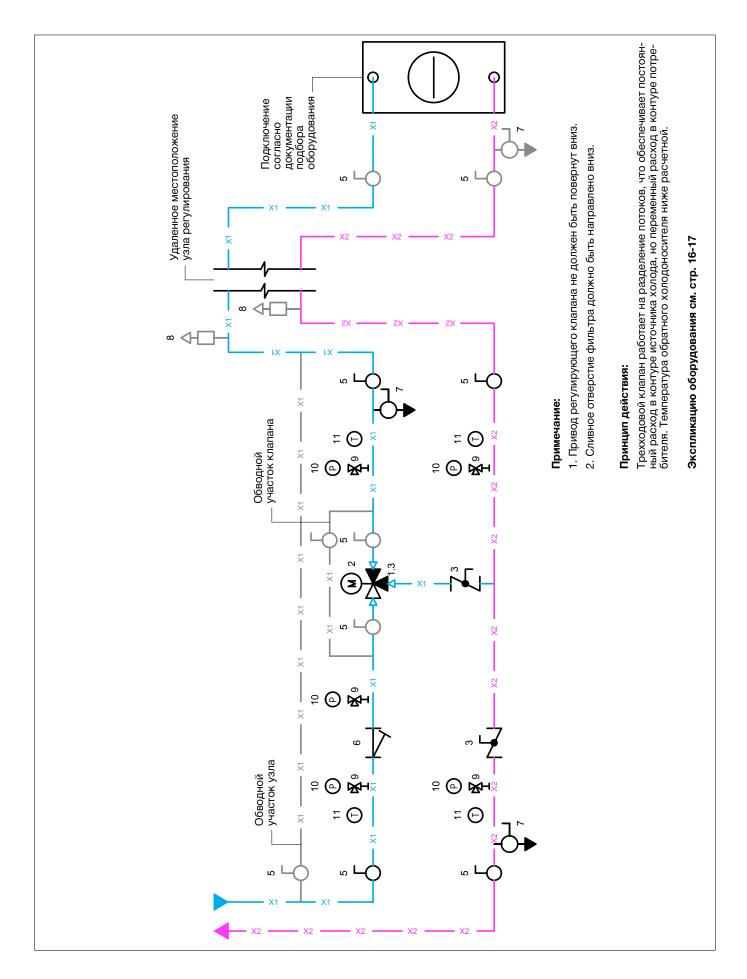


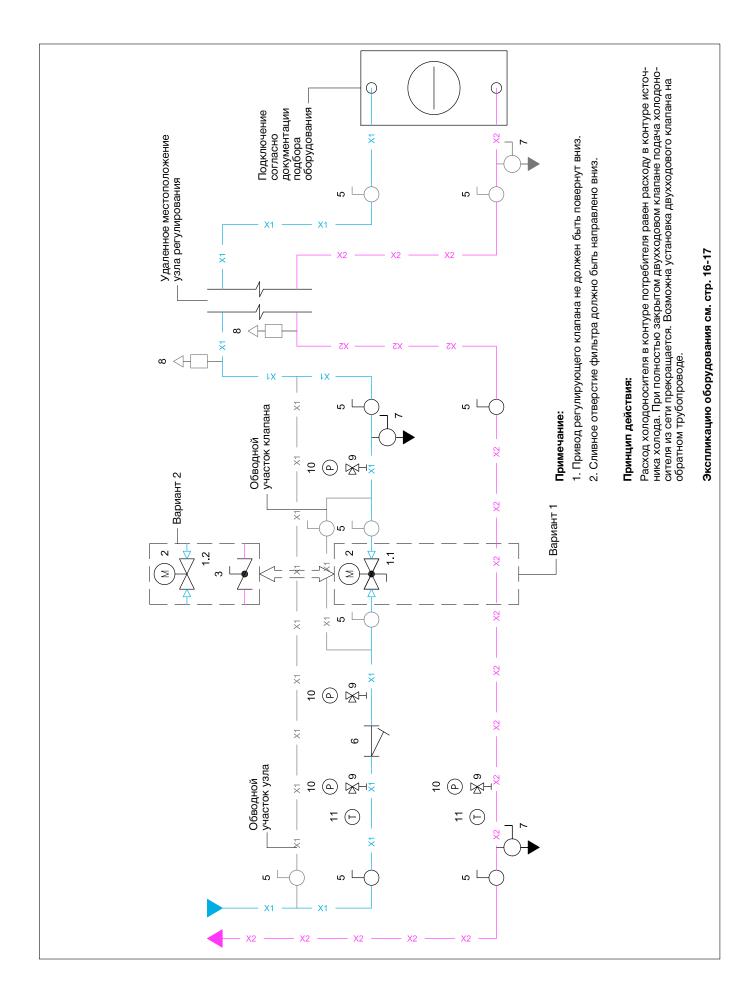
							Описание				
Наименование	Блок-схема	CTO		Подключение		Контур потребителя	требителя	Контур источника		2	
			По независимой схеме	По зависимой схеме	Замкнутый контур	Постоянный расход	Переменный расход	Постоянный расход	Переменный расход	Качественное регулирование	Защита от замораживания
Схема 1		7	+	1	-	+	1	1	+	+	+
Схема 2		8	-	+	-	+	-	+	1	+	+
Схема 3		6	+	1	•	+	-	•	+	+	+
Схема 4		10	-	+	-	-	+	+	-	1	ı
Схема 5		1	+		•	-	+	-	+		ı
Схема 6		12	-	+	•	-	+	+	-	-	1
Схема 7		5.	+	ı			+	1	+		ı
Схема 8		4	ı		+		+	+	-	1	+
Схема 9		15	ı	ı	+	+		+		1	1

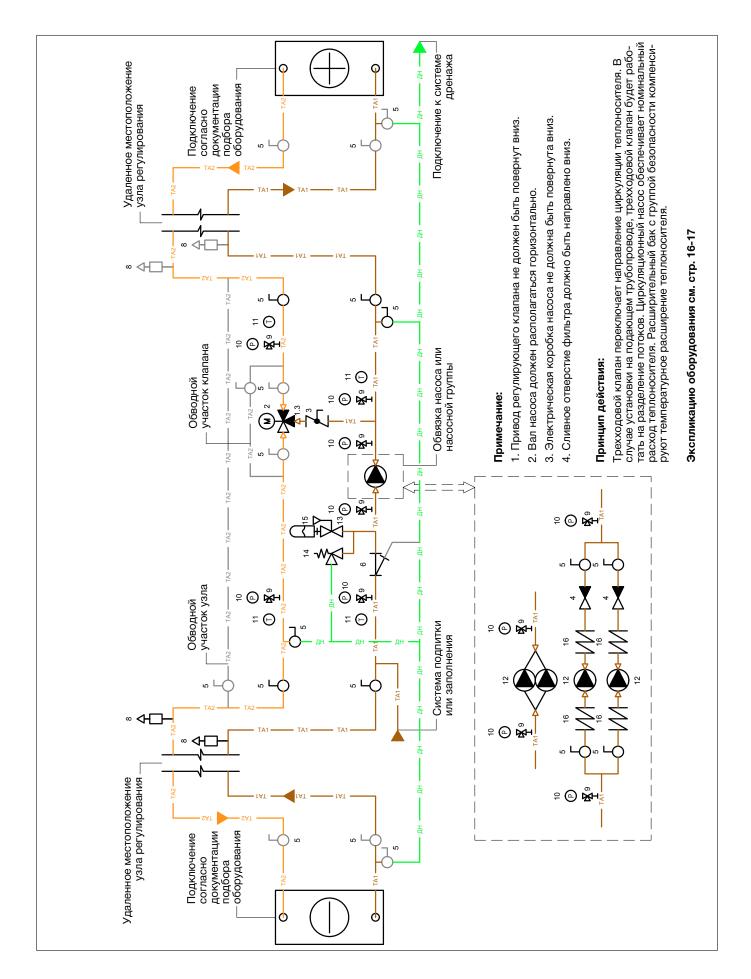


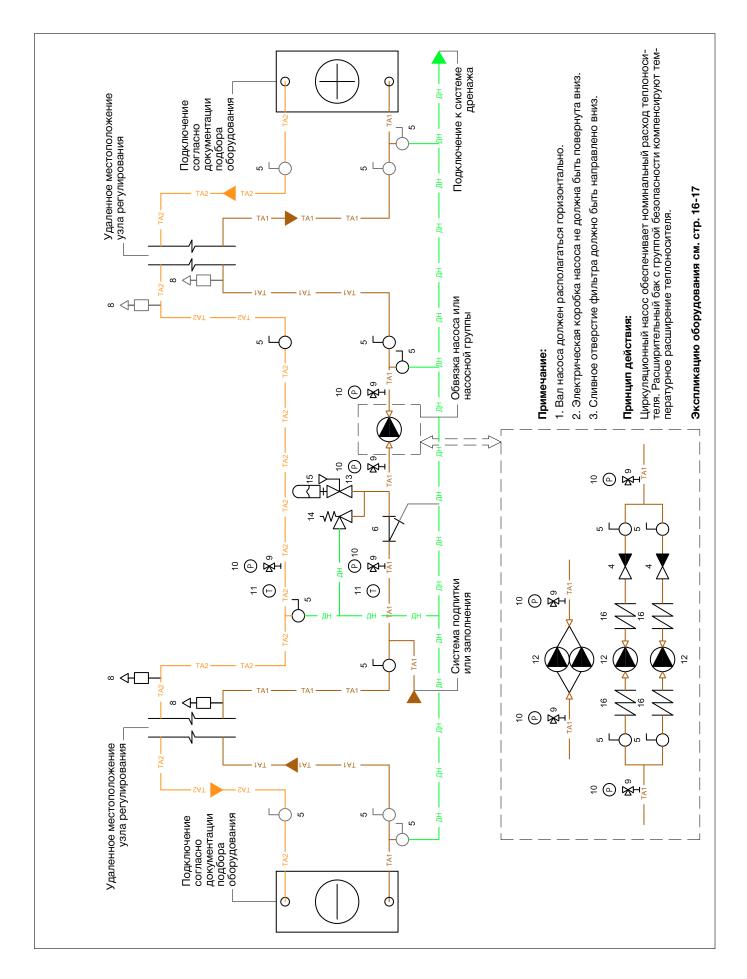


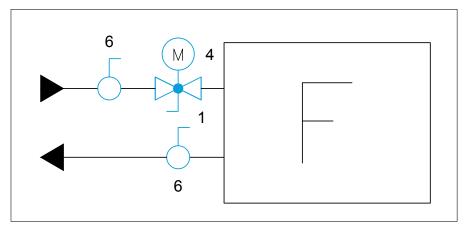












Nº	Обозначение	Наименование	Артикул	Диаметр номинальный DN, мм	Максимальное рабочее давле- ние PN, бар	Рабочая температура Т, °C
		Комбинированный балансировочно	о-регулирую.	ций вентиль		
		Cocon QTZ, резьбовое соединение, латунный	114 xx xx	1532	16	от -10 до +120
1.1		Cocon QTR, резьбовое соединение, бронзовый	114 61 xx	40, 50	16	от -10 до +120
		Cocon QFC, фланцевое соединение, чугунный	114 61 xx	40150	16	от -10 до +120
		Двухходовой проходной вентиль				
1.2		Hycocon HTZ, резьбовое соедине- ние, бронзовый	106 86 xx	1540	16	от -10 до +120
		фланцевое соединение, чугунный	113 08 xx	15150	16	от 0 до +130
1.3		Трехходовой вентиль				1
		фланцевое соединение, чугунный	113 08 xx	15150	16	от 0 до +130
		Tri-D TR распределительный, резь- бовой, бронзовый	113 02 xx	20, 25, 40	16	от 0 до +120
		Tri-M TR смесительный, резьбовой, бронзовый	113 17 xx	20, 25, 40	16	от 0 до +120
		Tri-CTR резьбовой, бронзовый	113 12 xx	1550	16	от -10 до +120
		Привод	I			I
2	M	См. таблицу на стр. 62 - 63				
		Регулирующий вентиль ручной				
3		Hydrocontrol VTR, резьбовое соединение, бронзовый	106 01 xx	1550	25	от -20 до +150
		Hydrocontrol VFC, фланцевое соединение, чугунный	106 26 xx	20400	16	от -10 до +150
		Обратный клапан				T
		косая врезка, резьбовое соединение, бронзовый	107 20 xx	11550	16	от -10 до +120
4		прямая врезка, резьбовое соединение, бронзовый	107 50 xx	1550	16	от -10 до +120
		фланцевое соединение, чугунный	107 30 xx	40300	16	от -10 до +120
		Запорная арматура				
		кран шаровой Optibal, резьбовое соединение, латунный	107 60 xx	1550	16	от -10 до +100
5		кран шаровой Optibal, резьбовое соединение, латунный	107 60 xx	65100	16	от -10 до +70
		дисковый поворотный затвор с позиционируемым рычагом, межфланцевый, чугунный	104 82 xx 104 62 xx	50200	16	от -10 до +110
		дисковый поворотный затвор с червячной передачей, межфланцевый, чугунный	104 89 xx 104 69 xx	50400 50300	16	от -10 до +110

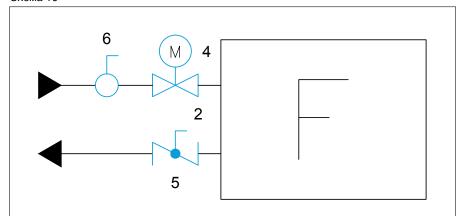
Nº	Обозначение	Наименование	Артикул	Диаметр номинальный DN, мм	Максимальное рабочее давле- ние PN, бар	Рабочая температура Т, °C
		Фильтр сетчатый				
6		резьбовое соединение, бронзовый	112 00 xx	1580	25	от -10 до +150
	7	фланцевое соединение, чугунный	112 20 xx	15600	16	от 0 до +120
		Кран для дренажа				
7		кран шаровой Optiflex со штуцером для шланга, резьбовое соединение, латунный	103 33 xx	1525	16	до +120
	\triangle	Воздухоотводчик автоматический				
8		с автозапором, резьбовое соединение, латунный	108 83 xx	1520	10	от 0 до +110
		Кран трехходовой для манометра				
9		с фланцем для испытаний 25 x 60 мм, резьбовое соединение, латунный	111 02 04	15	10	до +120
10	P	Манометр показывающий				
11	T	Термометр показывающий				
12		Циркуляционный насос				
	∇	Клапан колпачковый				
13		Expa-Con с пломбировочным устройством, резьбовое соедине- ние, латунный	108 90 xx	2040	10	до +120
14	Ž	Клапан предохранительный				
15	+	Бак расширительный мембранный				
16		Вставка гибкая				

			Потре	битель		Опис	ание	
Наиме-	Блок-схема	Стр	Фані	койл	Контур пот	гребителя	Контур и	істочника
нование	27010	J.,	Воздухона- греватель	Воздухо- охладитель	Постоянный расход	Перемен- ный расход	Постоян- ный расход	Переменный расход
Схема 10	→ → → → → → → → → →	18	+	+	-	+	-	+
Схема 11	(A)	18	+	+	-	+	-	+
Схема 12		19	ı	+	-	+	+	1
Схема 13		19	+	+	-	+	-	+
Схема 14	S	19	+	+	-	+	-	+

Примечание:

- 1. Привод регулирующего клапана не должен быть повернут вниз.
- 2. Сливное отверстие шарового крана должно быть направлено вниз.

Принцип действия:

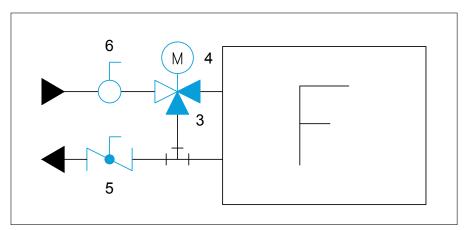

Расход тепло- или холодоносителя в контуре потребителя равен расходу в контуре источника. При полностью закрытом двухходовом клапане подача тепло- или холодоносителя из сети прекращается.

1. Привод регулирующего клапана не

2. Сливное отверстие балансировочного клапана должно быть направлено

должен быть повернут вниз.

Схема 10



Принцип действия:

Примечание:

Расход тепло- или холодоносителя в контуре потребителя равен расходу в контуре источника. При полностью закрытом двухходовом клапане подача тепло- или холодоносителя из сети прекращается.

Схема 11

Схема 12

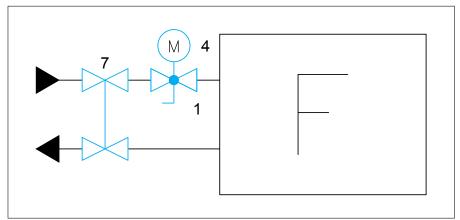


Схема 13

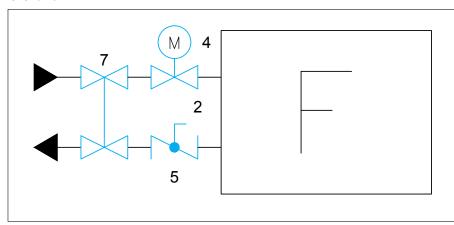


Схема 14

Примечание:

- 1. Привод регулирующего клапана не должен быть повернут вниз.
- 2. Сливное отверстие балансировочного клапана должно быть направлено вниз.

Принцип действия:

Расход холодоносителя в контуре потребителя переменный, расход в контуре источника постоянный. При закрытом на проход трехходовом клапане холодоноситель из сети по байпасному участку возвращается к источнику.

Примечание:

- 1. Привод регулирующего клапана не должен быть повернут вниз.
- 2. Сливное отверстие шарового крана в составе узла Flypass 4TZ должно быть направлено вниз.

Принцип действия:

Расход тепло- или холодоносителя в контуре потребителя равен расходу в контуре источника. При полностью закрытом двухходовом клапане подача тепло- или холодоносителя из сети прекращается. Наличие узла Flypass 4TZ позволяет осуществлять промывку, слив и заполнение контуров потребителя и источника независимо друг от друга.

Примечание:

- 1. Привод регулирующего клапана не должен быть повернут вниз.
- 2. Сливное отверстие шарового крана в составе узла Flypass 4TZ должно быть направлено вниз.

Принцип действия:

Расход тепло- или холодоносителя в контуре потребителя равен расходу в контуре источника. При полностью закрытом двухходовом клапане подача тепло- или холодоносителя из сети прекращается. Наличие узла Flypass 4TZ позволяет осуществлять промывку, слив и заполнение контуров потребителя и источника независимо друг от друга.

N₂	Обозначение	Наименование	Артикул	Диаметр номи- нальный DN, мм	Максимальное рабочее давле- ние PN, бар	Рабочая температура Т, °C
		Комбинированный балансировочно-	регулируюц	ций вентиль		
1		Cocon QTZ, резьбовое соединение, латунный	114 xx xx	1532	16	от -10 до +120
	_	Двухходовой проходной вентиль		I		
2		Hycocon HTZ, резьбовое соединение, бронзовый	106 8x xx	1540	16	от -10 до +120
		Cocon 2TZ, резьбовое соединение, латунный	114 5x xx	15, 20	10	от -10 до +120
		Трехходовой вентиль				
		Tri-D plus TB, распределительный, резьбовой, латунный	114 26 04	15	16	от -10 до +120
3		Tri-D TR, распределительный, резь- бовой, бронзовый	113 02 xx	20, 25, 40	16	от 0 до +120
		Tri-CTR резьбовой, бронзовый	113 12 xx	1550	16	от -10 до +120
		Привод				
4	M	См. таблицу на стр. 62 - 63				
		Регулирующий вентиль ручной				
5		Hycocon VTZ, резьбовое соединение, латунный	106 1x xx	1550	16	от -10 до +120
		Hydrocontrol VTR, резьбовое соединение, бронзовый	106 0x xx	1550	25	от -20 до +150
		Запорная арматура				
6		кран шаровой Optibal, резьбовое соединение, латунный	107 60 xx	1550	16	от -10 до +100
		кран шаровой Optibal, резьбовое соединение, со штуцером для слива	107 78 xx	1532	16	от -10 до +100
		Запорная арматура	T	T		_
7		Flypass 4TZ, резьбовое соединение, латунный, со штуцером для слива	114 95 04 114 95 06	15, 20	16	от -10 до +120

Допустимые линейные потери напора на трубопроводе: 100 Па/м

Теплоноситель: вода

_														
TOME	i Givibi, iviivi	2- и 3-ходовые регулирующие вентили с при- водами	15	15	15	20	25	32	40	20	92	80/100	100/125	125/150
OBO MODEO A	роводной сис	Автома- тическая баланси- ровочная арматура Сосоп Q	15	15/20	20/20	25	25/32	32/40	40/50	29/02	65/80	80/100	100/125	125/150
Vence unit innovori satamatros troformoso anotá cuertame.	lower to by or	Ручная баланси- ровочная арматура Hydrocontrol	15	15	15	20	25	32	40	50	65	80/100	100/125	150/200
OBULIĂ PROVOR 21	е доходи ироко	Запорная арматура, сетчатые фильтры, обратные клапаны	15	20	52	32	40	9	65	80	100	125	150	200
>		Трубо- провод	15	20	25	32	40	50	65	80	100	125	150	200
Скорость течения	M/c	Макси- мальная	0,33	0,41	0,49	0,59	0,61	0,71	0,84	0,93	1,1	1,26	1,42	1,73
Скорост	2	Мини- маль- ная	0	0,18	0,26	0,28	0,43	0,38	0,42	0,61	0,55	0,72	0,88	8,0
-изоноси-	, кг/ч	Макси- маль- ный	233	528	286	2 079	2 895	5 447	10 860	16 616	27 751	58 244	93 533	202 141
Расход те	теля,	Мини- мальный	0	233	528	286	2 079	2 895	5 447	10 860	16 616	27 751	58 244	93 533
Температурный график: 7-12 °C	Мощность секции охлаждения, Вт	Макси- мальная	1 100	2 500	4 700	10 100	15 300	29 100	59 300	91 800	188 400	333 800	540 600	1 149 400
Темпер график	Мощнос [.] охлажд	Мини- мальная	0	1 100	2 500	4 700	10 100	15 300	29 100	29 300	91 800	188 400	333 800	540 600
рный гра- -70 °С	ь секции за, Вт	Макси- мальная	008 9	15 400	28 800	002 09	84 500	159 000	317 000	485 000	976 000	1 700 000	2 390 000	5 575 000
Температурный гра- фик: 95-70 °C	Мощность секции нагрева, Вт	Минималь- ная	0	008 9	15 400	28 800	002 09	84 500	159 000	317 000	485 000	976 000	1 700 000	2 730 000

Примечание: допускается установка ручных балансировочных вентилей в соответствии с условным проходом трубопровода расчет выполнен в программе OV Select для стальных труб DIN 2440 (DN15-50) и DIN 2448 (DN65-300)

Допустимые линейные потери напора на трубопроводе: 150 Па/м

Теплоноситель: пропиленгликоль с концентрацией 43% (-25 °C)

Температу фик: 9	Температурный гра- фик: 95-70 °C	Температурный гра- фик: 7-12 °C	рный гра- -12 °C	Расход теплоноси- теля, кг/ч	плоноси- кг/ч	Скорость течения теплоносителя,	, течения сителя,		>	Условный проход, мм	MM	
Мощнос: нагре	Мощность секции нагрева, Вт	Мощность секции охлаждения, Вт	ь секции эния, Вт			D/W	ပ					
Минималь- ная	Макси- мальная	Мини- мальная	Макси-	Мини- мальный	Макси- маль- ный	Мини- мальная	Макси- маль- ная	Трубопро- вод	Запорная арматура, сетчатые фильтры, обратные клапаны	Ручная балан- сировочная арматура Hydrocontrol	Автома- тическая баланси- ровочная арматура Сосоп Q	2- и 3-ходо- вые регулиру- ющие вентили с приводами
0	0989	0	320	0	255	0	0,35	15				
0989	15 500	0	1 070	255	222	0,19	0,44	20	20	15	15/20	15
15 500	29 000	1 070	2 700	222	1078	0,28	0,52	25	25	15	20/20	15
29 000	61 600	2 700	8 000	1078	2 292	6,0	69'0	32	32	20	25	20
61 600	93 200	8 000	14 600	2 2 2 2	3 468	0,47	2,0	40	40	25	25/32	25
93 200	177 500	14 600	24 800	3 468	6 605	0,44	0,83	50	50	32	32/40	32
177 500	382 200	24 800	52 100	6 605	14 221	0,47	1,02	65	65	40	40/50	40
382 200	590 100	52 100	80 400	14 221	21 957	0,74	1,15	80	80	20	29/02	90
590 100	1 018 900	80 400	138 600	21 957	37 913	22,0	1,32	100	100	92	65/80	65
1 018 900	1 805 600	138 600	248 500	37 913	67 185	98'0	1,53	125	125	80/100	80/100	80/100
1 805 600	2 930 600	248 500	407 600	67 185	109 046	1,06	1,72	150	150	100/125	100/125	100/125
2 930 600	6 834 400	407 600	969 400	109 046	254 303	0,91	2,12	200	200	150/200	125/150	125/150
6 834 400	12 648 500	969 400	1 821 600	254 303	470 642	1,33	2,46	250	250	200/250	150/200	-
12 648 500	18 531 000	1 821 600	2 755 800	470 642	689 526	1,82	2,66	300	300	250/300		1

Примечание: допускается установка ручных балансировочных вентилей в соответствии с условным проходом трубопровода расчет выполнен в программе OV Select для стальных труб DIN 2440 (DN15-50) и DIN 2448 (DN65-300)

1. Исходные данные:

- температурный график: 7-12 °C
- холодоноситель: вода
- потребители: 15 фанкойлов в комплекте с 2-х ходовым регулятором температуры и 2 воздухоохладителя ПВУ с приведенными на схеме гидравлическими характеристиками
- трубопровод: на основе стальных электросварных прямошовных труб ГОСТ 10704-91

2. Узлы обвязки:

- фанкойла в соответствии со схемой 13 (см. стр.19)
- приточной установки в соответствии со схемой 7 (см. стр.13)

Исходные данные системы холодоснабжения представлены на рис. 1.

3. Определить:

- номинальный диаметр участков трубопроводной сети $d_{\rm n}$, мм
- номинальный диаметр трубопроводной арматуры d_n , мм
- значения настроек балансировочной арматуры
- рабочую точку циркуляционного насоса H, м и V, м³/ч

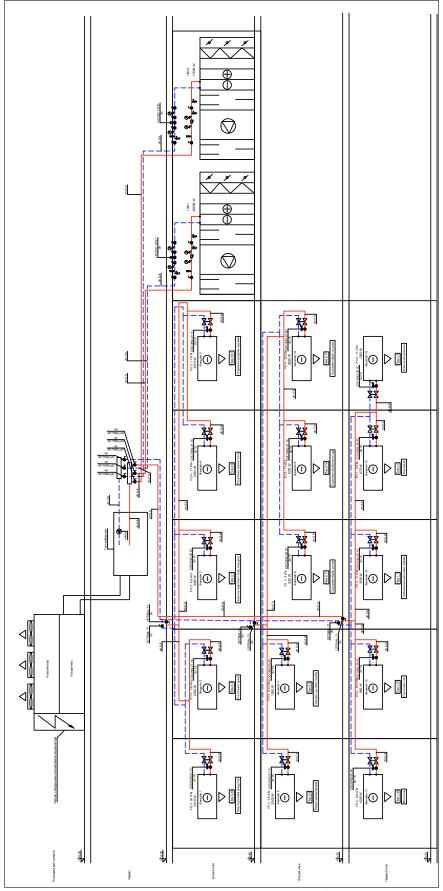


Рис. 1 Принципиальная расчетная схема системы холодоснабжения в программе OV C.O. 3.8

4. Расчет:

4.1. Определяем значения расхода холодоносителя на участках каждого циркуляционного кольца по формуле:

$$G = \frac{Q}{c_n \times \Delta T}$$
 (1)

Где:

 $\mathcal{C}_{\mathcal{D}}$ - удельная теплоемкость рабочей среды, Втч/кгК;

 ΔT - температурный напор, K;

Q - тепловая нагрузка или нагрузка по холоду, B_{T} ;

 $G\,$ - массовый расход рабочей среды, кг/ч

4.2. Далее по номограммам для заданных труб, исходя из ограничения линейных потерь напора величиной 100 Па/м и расчетных расходов, определяем соответствующие значения условных проходов участков трубопровода.

4.3. Линейные потери для труб всех участков трубопровода определяем по формуле:

$$\Delta P = h_{\pi} \times L \quad (2)$$

Где:

 ΔP - потеря напора на участке трубопровода, Па;

 $h_{_{\scriptscriptstyle \eta}}$ - линейная потеря напора, Па/м;

_ - длина участка трубопровода

4.4. Считаем потери напора на трубопроводной арматуре (кроме балансировочных вентилей) и местных сопротивлений трубопровода по формуле :

$$\Delta P = \sum_{i=1}^{n} \xi_i \times \frac{\rho \times \upsilon^2}{2}$$
 (3)

Где:

 ξ_i - коэффициент местного сопротивления;

ho - массовая плотность рабочей среды, кг/м.куб.;

 υ - линейная скорость течения рабочей среды, м/с

или:

$$\Delta P = 10^5 \times \frac{G^2}{k_{ye}^2} \times \frac{\rho}{1000}$$
 (4)

Где:

 ΔP - потеря напора на элементе трубопроводной сети, Па;

 ${\it G}$ - расход рабочей среды, м.куб./ч;

 $k_{_{vs}}$ - пропускная способность элемента трубопроводной сети, м.куб./ч;

ho - массовая плотность рабочей среды, кг/м.куб.

4.5. Суммируем потери напора на трубопроводной арматуре и трубах для каждого циркуляционного кольца системы холодоснабжения. Выбираем кольцо с наибольшим сопротивлением, добавляем к значению потери напора в нем минимально допустимые перепады давления величиной 3 кПа (ручные) или 15 (20) кПа (автоматические балансировочные вентили). Из полученного значения вычитаем величины потери напора в других циркуляционных кольцах. Получившаяся разница перепадов давлений является расчетным перепадом давления на балансировочных вентилях из условия равенства всех циркуляционных колец системы холодоснабжения (гидравлический баланс).

Затем по рассчитанным значениям перепада давления и расчетного расхода по формуле (4) определяем значение Ку, далее по

каталогу выбираем соответствующие этому значению типоразмеры и преднастройки для ручных балансировочных вентилей (обвязка приточных установок). Для автоматических балансировочных вентилей подбор типоразмера осуществляем по диапазону расходов, включающему в себя значение расчетного расхода (обвязка фанкойлов).

В заключение определяем рабочую точку насоса по значениям потери напора (гидравлический расчет) и объемной подачи теплоносителя (тепловой расчет) нашей системы.

Приведенный выше алгоритм расчета заложен в программе Oventrop C.O. 3.8. Результат расчета рассматриваемого примера системы холодоснабжения приведен на рис.2 (расчет циркуляционных колец) и рис. 3 (принципиальная расчетная схема).

Итогом расчета в программе являются расчетная точка циркуляционного насоса (H = 4,15 м при V=15,74 м³/ч), подбор типоразмеров и настроек балансировочных вентилей, а также диаметров трубопровода (см. итоги расчета расчетного файла).

Библиотека сборочных чертежей, монтажных узлов обвязки оборудования, а также дистрибутив программы Oventrop C.O., могут быть предоставлены в Представительстве Oventrop. Обращайтесь за консультациями по работе в программе.

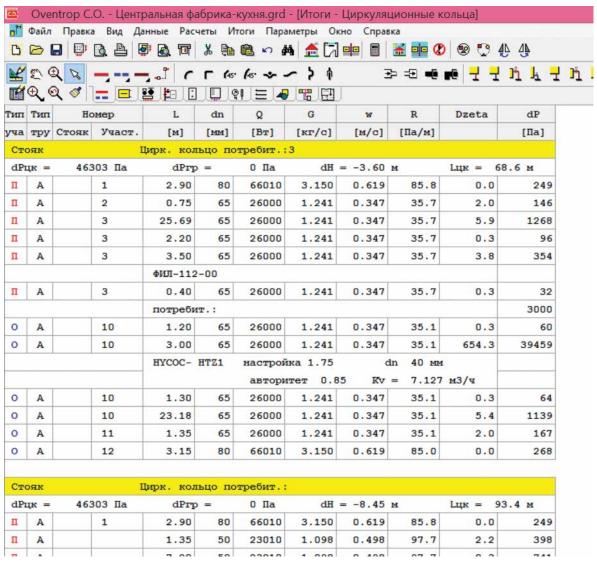
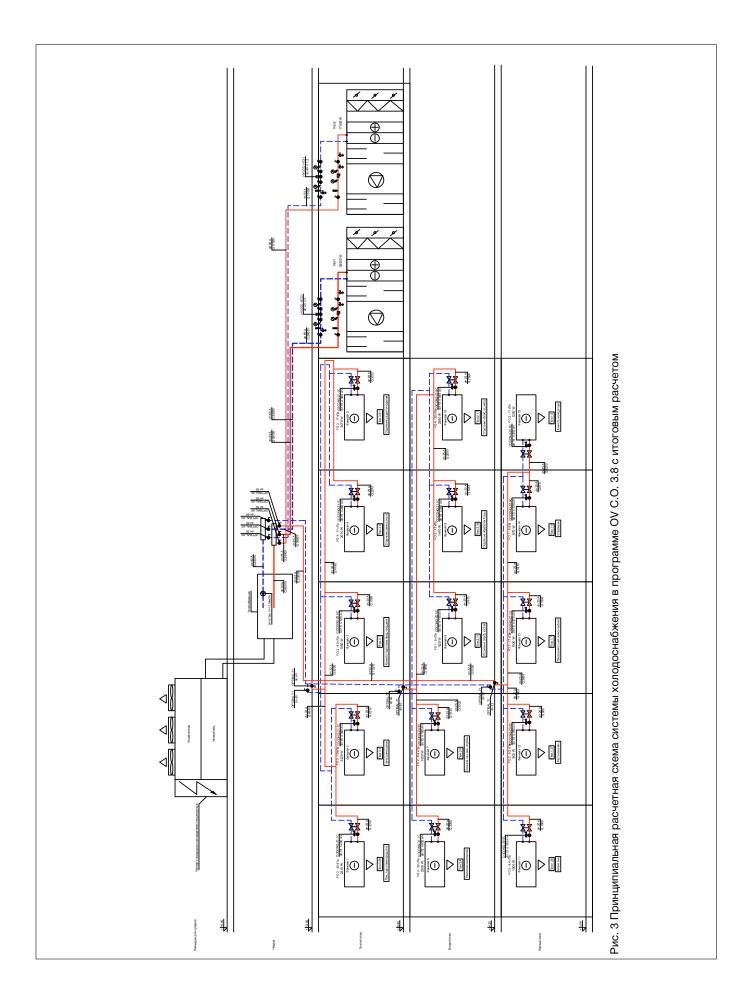



Рис. 2 Результат расчетов наиболее нагруженного циркуляционного кольца

Сис	стема		□ теплоснабх						
			□ холодосна	бжение					
			□ утилизация						
Тем	пературный гр	рафик	подающая	/ обратная	°C				
Pa6	очая среда		□ вода						
			□ антифриз _		; концентрац	ия, %			
Кон	тур источника	l	□ постоянны	й расход (зав	исимая схема п	одключения)			
			□ переменны	й расход (нез	вависимая схема	а подключения)		
Тру	бопроводы		□ стальные						
			🗆 другое		(указать матер	иал)			
Ари	иатура		Oventrop						
Пот	гребители (кон	тур потребител	เя)						
Nº	Наименование (номер) потребителя (установки)	Расчетная мощность потребителя, Вт	Гидравличе- ское сопро- тивление потребителя, Па	Емкость потребите- ля, л	Количествен- ное регули- рование	Качествен- ное регули- рование	Защита от заморажи- вания	Вид потре- бителя	Коли- чество, шт.
1									
2									
3									
4									
5									
6 7 8									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
Прі	имечание:								
Пер	реданные мате	риалы в качест	ве исходных да	анных:					
n	оэтажные план	ны в формате с	lwg						
I			ипиальная схем		-				
I		-	обвязки потреб						
I	-				бор согласоват	ь в соответств	ии с рекоменда	ациями Oventr	ор
I			і Характеристи						
∣□д	окументация п	одбора вентил:	яционного обог	оудования					

Примечание:

Если количество потребителей (установок) превышает 20, сохраните их исходные данные в другом файле.

Таблицу потребителей можно не заполнять, при наличии вышеобозначенных переданных исходных данных.

Описание:

Присоединительные узлы «Flypass 4TZ» предназначены для подключения фанкойлов к системам центрального кондиционирования. Состоят из двух 3-ходовых Т-портовых шаровых кранов, соединенных байпасной перемычкой. Один из шаровых кранов оснащен сливным портом. Применяются совместно с регулирующими вентилями различных типов и сетчатыми фильтрами со сливной пробкой.

Условный проход:Артикул:DN 15114 95 04DN 20114 95 06

Условный проход: K_{vs}/K_{vs} байпаса

DN 15 1.2/1.25 DN 20 1.2/1.25

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

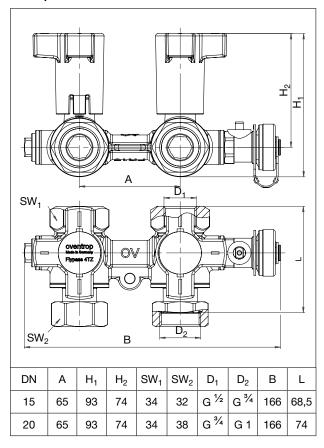
Максимальная рабочая температура +120 °C Минимальная рабочая температура -10 °C PN 16 бар

Функции:

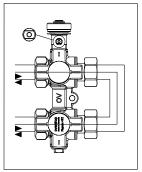
- Отключение фанкойлов
- Слив теплоносителя
- Удаление воздуха

Материалы:

Корпус: латунь, стойкая в выщелачиванию цинка

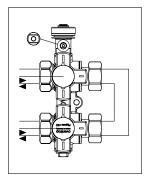

Уплотнительные кольца: EPDM, PTFE

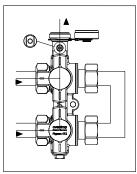
Рукоятки: полиамид

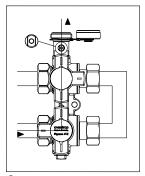

Указания по монтажу:

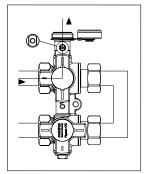
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения узла
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения узла
- проверить соединения на герметичность после монтажа

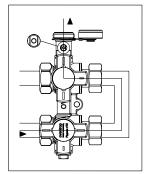

Размеры:

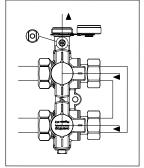

Функция присоединительного узла «Flypass 4TZ»

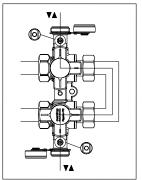

Нормальный режим

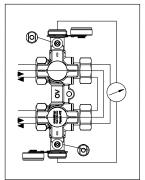

Режим байпаса

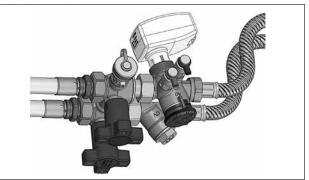

Отключение фанкойла


Слив теплоносителя из контура системы и удаление воздуха


Слив теплоносителя, удаление воздуха и промывка системы


Слив теплоносителя, удаление воздуха и промывка системы


Заполнение теплоносителя, удаление воздуха и промывка системы


Отключение фанкойла и слив теплоносителя из контура потребителя

Слив/заполнение, промывка системы и удаление воздуха

Измерение перепада давления

Пример установки узла «Flypass 4TZ»

Описание:

Комбинированные резьбовые балансировочные вентили серии «Cocon QTZ» предназначены для проведения гидравлической наладки трубопроводных систем путем прямого выставления расхода на настроечной шкале. В отличие от случая применения ручных балансировочных вентилей не требуют проведения гидравлического расчета циркуляционных колец трубопровода для определения значений предварительной настройки, что упрощает процедуру подбора. В дополнение к основной функции автоматического поддержания расхода при установке исполнительного механизма получают дополнительную функцию регулятора температуры. Не могут быть использованы для измерения расхода теплоносителя посред ством расходомеров Oventrop «OV-DMC 2» и «OV-DMPC», а только для контроля требуемого минимального перепада давления на вентиле в целях проверки условия обеспечения расчетного расхода. Не являются запорным устройством.

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +120 °C Минимальная рабочая температура -10 °C PN 16 бар

Функции:

- Прямая настройка расхода теплоносителя
- Регулирование температуры воздуха
- Измерение перепада давления на вентиле

Подключение привода:

Присоединительная резьба: М 30х1,5

Ход штока вентиля:

- 2.8 мм (DN 10/15/20: 30-1050 л/ч)

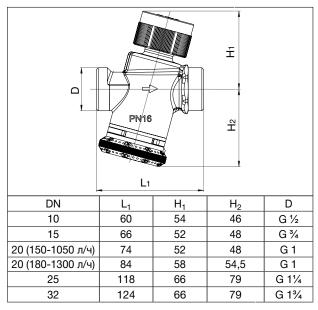
- 3.5 мм (DN 20: 180-1300 л/ч)

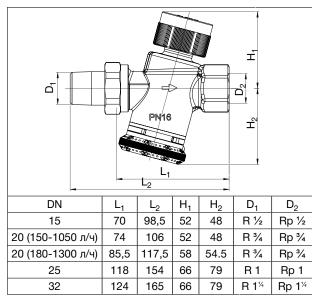
- 4.0 мм (DN 25, DN 32)

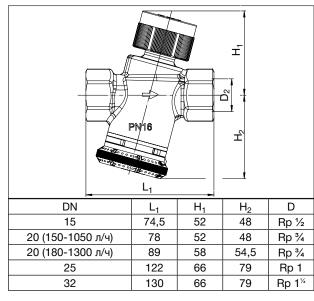
Потребное усилие привода: 90-150 Н

Материалы:

Корпус: латунь Ms-EZB

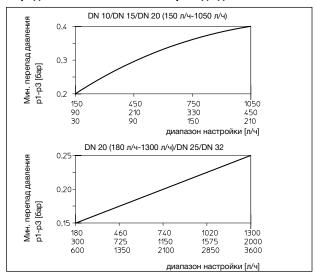

Шпиндель: коррозионностойкая сталь


Уплотнение: PTFE

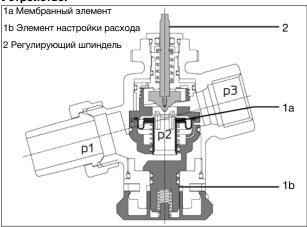

Указания по монтажу:

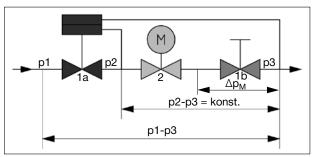
- устанавливать в направлении течения теплоносителя по стрелке на корпусе вентиля
- не устанавливать вертикально вниз при установке вместе с сервоприводом
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа

Размеры:


Типоразмеры:

		A	ртикул (в зав	висимости от	гисполнения	1)
DN	Расход, л/ч		ней резьбой цером	С наружно	й резьбой	С внутр. резьбой
	3,, .	с заглуш- ками	с нип. КИП	с заглуш- ками	с нип. КИП	с заглуш- ками
15	30 - 210	114 55 04	114 60 04	114 55 64	114 60 64	114 75 04
15	90 - 450	114 56 04	114 61 04	114 56 64	114 61 64	114 76 04
15	150 -1 050	114 57 04	114 62 04	114 57 64	114 62 64	114 77 04
20	150 - 1050	114 55 06	114 60 06	114 55 66	114 60 66	114 75 06
20	180 - 1300	114 56 06	114 61 06	114 56 66	114 61 66	114 76 06
25	300 - 2000	114 56 08	114 61 08	114 56 68	114 61 68	114 7608
32	600 - 3600	114 56 10	114 61 10	114 56 70	114 61 70	114 76 10


Комплектующие:


Описание	DN	Артикул
	15	114 05 92
11-6	20	114 05 93
Набор из 2-х втулок под сварку	25	114 05 94
	32	114 05 95
	15 (15)	114 06 92
	15 (18)	114 06 91
Hafan ya û y prygay gan nayyy	20 (18)	114 06 93
Набор из 2-х втулок под пайку	20 (22)	114 06 94
	25 (28)	114 06 95
	32 (35)	114 06 96
Набор из 2-х втулок с наружной резьбой	15	114 07 92
	20	114 07 93
	25	114 07 94
	32	114 07 95
	15	11408 92
Набор из 2-х втулок с	20	114 08 93
внутренней резьбой	25	114 08 94
	32	114 08 95

Определение минимального перепада давления:

Устройство:

Приведенные диаграммы позволяют определить минимально необходимый перепад давления в зависимости от выбранного типоразмера вентиля «Cocon QTZ» и значения расчетного расхода, выставляемого на нем. Если потребный минимальный перепад давления на вентиле р1-р3 обеспечен не будет, вентиль, в свою очередь, не обеспечит объемный расход теплоносителя, выставленный на его настроечной шкале.

На разрезе вентиля «Cocon QTZ» видны области с различным давлением:

- р1- давление на входе
- р2- давление в области мембраны
- р3- давление на выходе

Вентиль автоматически поддерживает заданный расход при условии превышения минимально требуемого перепада давления р1-р3. Расход поддерживается за счет автоматического поддержания постоянного перепада давления p2-p3.

Работу комбинированного вентиля с приводом можно условно представить комбинацией последовательно установленных регулятора перепада давления, регулятора температуры и ручного балансировочного вентиля. Регулятор перепада давления срабатывает на себе избыточный располагаемый напор р1-р3 (до 40 кПа), поддерживая постоянным перепад давления p2-p3, равный сумме потерь напора на седле вентиля «Cocon QTZ» (на схеме регулятор температуры) и дроссельного отверстия (на схеме ручной балансировочный вентиль). Ход штока сервопривода изменяет площадь сечения седла вентиля и, соответственно, его пропускную способность k_{V1} и перепад давления ΔP_V . Настройка вентиля «Сосоп QTZ» изменяет площадь сечения дроссельного отверстия в корпусе вентиля и, соответственно, его пропускную способность ${\sf k}_{{\sf V}2}$ и перепад давления $\Delta{\sf Pm}.$ Таким образом, с учетом того что расход определяется произведением пропускной способности на квадратный корень из перепада давления p2-p3, при p2-p3=const расход через вентиль меняется пропорционально изменению пропускной способности $k_{V1}+k_{V2}$. В результате при работе в режиме регулятора температуры вентиль с установленным приводом имеет практически линейную зависимость расхода от хода штока на всем рабочем диапазоне.

Описание:

Комбинированные резьбовые балансировочные вентили серии «Cocon QTR» предназначены для проведения гидравлической наладки трубопроводных систем путем прямого выставления расхода на настроечной шкале. В отличие от случая применения ручных балансировочных вентилей не требуют проведения гидравлического расчета циркуляционных колец трубопровода для определения значений предварительной настройки, что упрощает процедуру подбора. В дополнение к основной функции автоматического поддержания расхода при установке исполнительного механизма получают дополнительную функцию регулятора температуры. Не могут быть использованы для измерения расхода теплоносителя посредством расходомеров Oventrop «OV-DMC 2» и «OV-DMPC», а только для контроля требуемого минимального перепада давления на вентиле в целях проверки условия обеспечения расчетного расхода. Не являются запорным устройством.

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +120 °C Минимальная рабочая температура -10 °C PN 16 бар

Функции:

- Прямая настройка расхода теплоносителя
- Регулирование температуры воздуха
- Измерение перепада давления на вентиле

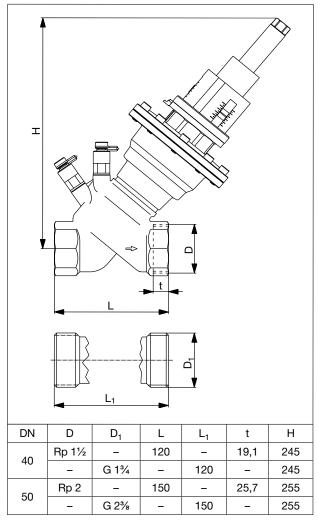
Подключение привода:

Присоединение: клеммное Ход штока вентиля: 10 мм

Потребное усилие привода: 500 Н

Материалы:

Корпус: бронза


Шпиндель: коррозионностойкая сталь

Уплотнения:
- седло: PTFE
- шпиндель: EPDM

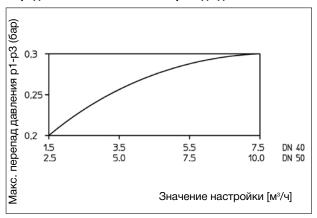

Указания по монтажу:

- устанавливать в направлении течения теплоносителя по стрелке на корпусе вентиля
- не устанавливать вертикально вниз при установке вместе с сервоприводом
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа

Размеры:

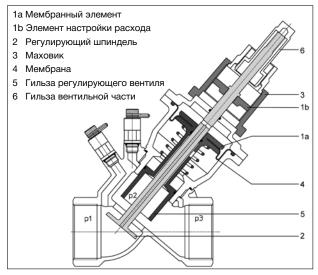
Настройка расхода:

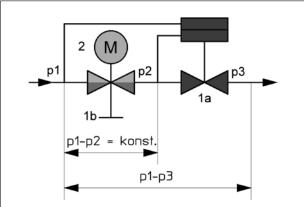
Перед выполнением процедуры настройки максимального расхода на вентиле необходимо предварительно снять гильзу, являющуюся адаптером для подключения сервопривода. Далее вращением настроечного маховика выставить необходимый расход на настроечной шкале на уровне горизонтальной риски.


Типоразмеры:

Артикул	DN	Расход, м³/ч	k _{vs} , м³/ч	p1-p3, бар (минмакс.)
114 61 12	40	1,5 - 7,5	11,5	
114 61 72	40	1,5 - 7,5	11,5	0,2 - 4 бар
114 61 16	50	2,5 - 10,0	15,0	(20 - 400 кПа)
114 61 74	50	2,5 - 10,0	15,0	

Комплектующие:


Описание	DN	Артикул
Hofon up 2 v prygov gog openiv	40	114 05 96
Набор из 2-х втулок под сварку	50	114 05 97
Набор из 2-х втулок под пайку	40 (42)	114 06 97
	50 (54)	114 06 98
Набор из 2-х втулок с наружной	40	114 07 96
резьбой	50	114 07 97


Определение минимального перепада давления:

Приведенные выше диаграммы позволяют определить минимально необходимый перепад давления в зависимости от выбранного типоразмера вентиля «Cocon QTR» и значения расчетного расхода, выставляемого на нем. Если потребный минимальный перепад давления на вентиле р1-р3 обеспечен не будет, вентиль, в свою очередь, не обеспечит объемный расход теплоносителя, выставленный на его настроечной шкале.

Устройство:

На разрезе вентиля «Cocon QTR» видны области с различным давлением:

- р1- давление на входе
- р2- давление в области мембраны
- р3- давление на выходе

Вентиль автоматически поддерживает заданный расход при условии превышения минимально требуемого перепада давления р1-р3. Расход поддерживается за счет автоматического поддержания постоянного перепада давления р1-р2.

Работу комбинированного вентиля с приводом можно условно представить комбинацией последовательно установленных регулятора температуры и регулятора перепада давления. Регулятор перепада давления срабатывает на себе избыточный располагаемый напор р1-р3 (до 40 кПа), поддерживая постоянным перепад давления р1-2, равный потере напора на седле вентиля «Сосоп QTR» (на схеме регулятор температуры). Настройка максимального расхода на вентиле осуществляется до установки сервопривода путем выбора соответствующего значения на настроечной шкале вентиля. Дальнейшее регулирование расхода в режиме работы регулятора температуры будет осуществляться ходом штока вентиля от положения «полностью закрыто» до установленного нижнего положения штока, задающего максимальный расход.

Описание:

Комбинированные резьбовые балансировочные вентили серии «Cocon QTC» предназначены для проведения гидравлической наладки трубопроводных систем путем прямого выставления расхода на настроечной шкале. В отличие от случая применения ручных балансировочных вентилей не требуют проведения гидравлического расчета циркуляционных колец трубопровода для определения значений предварительной настройки, что упрощает процедуру подбора. В дополнение к основной функции автоматического поддержания расхода при установке исполнительного механизма получают дополнительную функцию регулятора температуры. Не могут быть использованы для измерения расхода теплоносителя посред ством расходомеров Oventrop «OV-DMC 2» и «OV-DMPC», а только для контроля требуемого минимального перепада давления на вентиле в целях проверки условия обеспечения расчетного расхода. Не являются запорным устройством.

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +120 °C Минимальная рабочая температура -10 °C PN 16 бар

Функции:

- Прямая настройка расхода теплоносителя
- Регулирование температуры воздуха
- Измерение перепада давления на вентиле

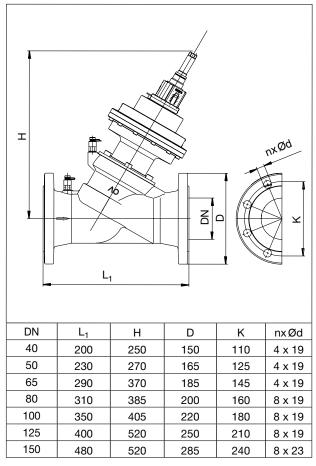
Подключение привода:

Присоединение: клеммное Ход штока вентиля: 10 мм

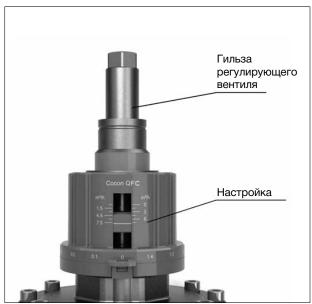
Потребное усилие привода: 500 Н

Материалы:

Корпус: бронза


Шпиндель: коррозионностойкая сталь

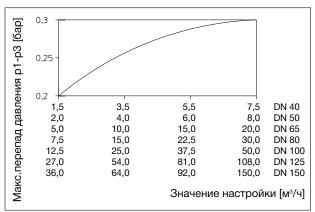
Уплотнения:
- седло: PTFE
- шпиндель: EPDM


Указания по монтажу:

- устанавливать в направлении течения теплоносителя по стрелке на корпусе вентиля
- не устанавливать вертикально вниз при установке вместе с сервоприводом
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа

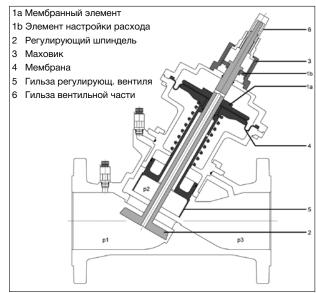
Размеры:

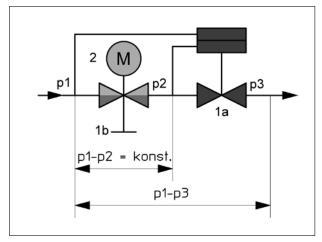
Настройка расхода:



Перед выполнением процедуры настройки максимального расхода на вентиле необходимо предварительно снять гильзу, являющуюся адаптером для подключения сервопривода. Далее вращением настроечного маховика выставить необходимый расход на настроечной шкале на уровне горизонтальной риски.

Типоразмеры:


Артикул	DN	Расход, м³/ч	k _{vs} , м³/ч	p1-p3, бар (минмакс.)
114 61 49	40	1,5 - 7,5	11,5	
114 61 50	50	2,0 - 8,0	12,0	
114 61 51	65	5,0 - 20,0	36,0	
114 61 52	80	7,5 - 30,0	56,0	0,2 - 4 бар
114 61 53	100	12,5 - 50,0	80,0	(20 - 400 кПа)
114 61 54	125	27,0 - 108,0	150,0	
114 61 55	150	36,0 - 150,0	220,0	
114 61 56	200	55,0 - 190,0	270,0	


Определение минимального перепада давления:

Приведенные выше диаграммы позволяют определить минимально необходимый перепад давления в зависимости от выбранного типоразмера вентиля «Cocon QFC» и значения расчетного расхода, выставляемого на нем. Если потребный минимальный перепад давления на вентиле р1-р3 обеспечен не будет, вентиль, в свою очередь, не обеспечит объемный расход теплоносителя, выставленный на его настроечной шкале.

Устройство:

На разрезе вентиля «Cocon QFC» видны области с различным давлением:

- р1- давление на входе
- р2- давление в области мембраны
- р3- давление на выходе

Вентиль автоматически поддерживает заданный расход при условии превышения минимально требуемого перепада давления р1-р3. Расход поддерживается за счет автоматического поддержания постоянного перепада давления p1-p2.

Работу комбинированного вентиля с приводом можно условно представить комбинацией последовательно установленных регулятора температуры и регулятора перепада давления. Регулятор перепада давления срабатывает на себе избыточный располагаемый напор p1-p3 (до 40 кПа), поддерживая постоянным перепад давления p1-2, равный

потере напора на седле вентиля «Сосоп QFC» (на схеме регулятор температуры). Настройка максимального расхода на вентиле осуществляется до установки сервопривода путем выбора соответствующего значения на настроечной шкале вентиля. Дальнейшее регулирование расхода в режиме работы регулятора температуры будет осуществляться ходом штока вентиля от положения «полностью закрыто» до установленного нижнего положения штока, задающего максимальный расход.

Описание:

Ручные резьбовые балансировочные вентили серии «Hydrocontrol VTR» предназначены для проведения гидравлической наладки трубопроводных систем путем выбора соответствующей предварительной настройки на настроечной шкале. В дополнение к основной функции настройки расхода теплоносителя имеют функцию запорного устройства. Поставляются в трех вариантах: заглушками (базовое исполнение), измерительными ниппелями (с доп. набором №2), измерительным ниппелем и сливным шаровым краном (с доп. набором №3). В комплектации с измерительными ниппелями измерения расхода теплоносителя посредством расходомеров Oventrop «OV-DMC 2» и «OV-DMPC».

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +150 °C Минимальная рабочая температура -20 °C PN 25 бар

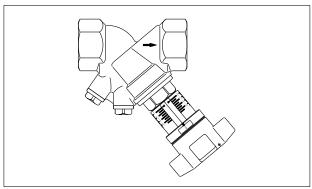
Функции:

- Настройка расхода теплоносителя
- Отключение потребителей
- Измерение расхода теплоносителя (опция)
- Слив теплоносителя (опция)

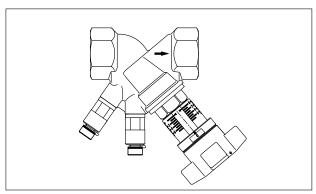
Материалы:

Корпус: бронза Rg 5 Шпиндель: латунь Ms-EZB

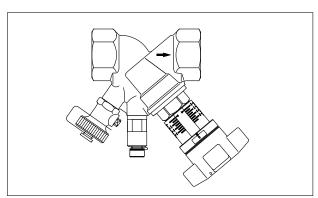
Уплотнения: PTFE


Указания по монтажу:

- не устанавливать вертикально вниз при установке вместе с сервоприводом
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа


Типоразмеры:

типоразмеры:			
	Артикул		
DN	С заглушками	С доп. набором №2	С доп. набором №3
15	1060104	1060204	1060304
20	1060106	1060206	1060306
25	1060108	1060208	1060308
32	1060110	1060210	1060310
40	1060112	1060212	1060312
50	1060116	1060216	1060316


Размеры:

с обеих сторон внутренняя резьба по DIN, артикул 106 01..

с обеих сторон внутренняя резьба по DIN, артикул 106 02..

с обеих сторон внутренняя резьба по DIN, артикул 106 01..

Комплектующие:

Описание	Артикул
Шаровый кран F+E (1 шт.)	1060191
Измерительные ниппели КИП (2 шт.)	1060281
Шаровый кран F+E (1 шт.) + измерительный ниппель КИП (1 шт.)	1060381
Адаптер КИП	1060298

Описание:

Ручные фланцевые балансировочные вентили серии «Hydrocontrol VFC» предназначены для проведения гидравлической наладки трубопроводных систем путем выбора соответствующей предварительной настройки на настроечной шкале. В дополнение к основной функции настройки расхода имеют функцию запорного устройства. Могут быть использованы для измерения расхода теплоносителя посредством расходомеров Oventrop «OV-DMC 2» и «OV-DMPC».

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +150 °C Минимальная рабочая температура -10 °C PN 16 бар

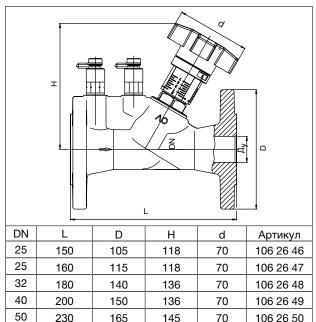
Функции:

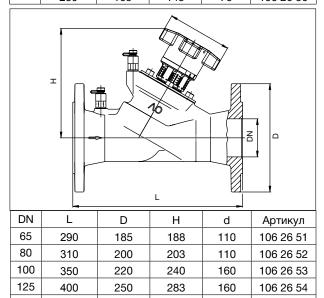
- Настройка расхода теплоносителя
- Отключение потребителей
- Измерение расхода теплоносителя

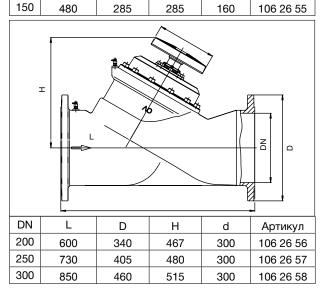
Материалы:

Корпус: серый чугун EN-GJL-250 Шпиндель: латунь Ms-EZB

Уплотнения:
- седло: PTFE
- шпиндель: EPDM


Указания по монтажу:


- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа


Типоразмеры:

DN	Артикул
20	1062646
25	1062647
32	1062648
40	1062649
50	1062650
65	1062651
80	1062652
100	1062653
125	1062654
150	1062655
200	1062656
250	1062657
300	1062658

Размеры:

Регулирующие 2-ходовые резьбовые вентили «Сосоп 2TZ» с установленными сервоприводами предназначены для работы в качестве регуляторов температуры воздуха. Кроме базовой функции регулятора температуры имеют функцию ограничения расхода теплоносителя путем выбора соответствующей преднастройки, а также слива и заполнения системы. Оснащены измерительной техникой «есо» либо «classic», посредством которой могут быть подключены к измерительным устройствам «OV-DMC 2» и «OV-DMPC» для измерения расхода теплоносителя. Не являются запорным устройством.

Регулировочная характеристика:

- линейная (Kvs=0.45 и 1.00)
- равнопроцентная (Kvs=1.80)

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +120 °C Минимальная рабочая температура -10 °C PN 10 бар

Функции:

- Регулирование температуры воздуха
- Ограничение расхода теплоносителя
- Измерение расхода теплоносителя

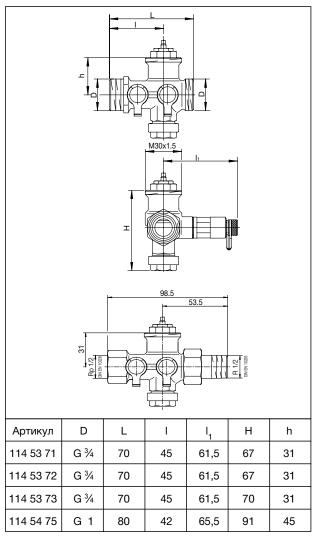
Подключение привода:

Присоединительная резьба: М 30х1,5

Ход штока вентиля: - 2.5 мм (DN 15)

- 3.5 мм (DN 20)

Потребное усилие привода: 90-150 Н


Материалы:

Корпус: латунь Ms-EZB

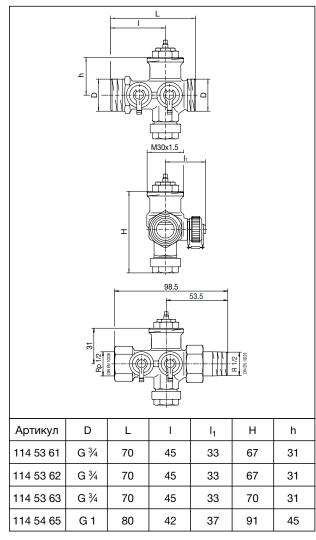
Шпиндель: нержавеющая сталь

Уплотнения:
- седло: PTFE
- шпиндель: EPDM

Размеры:

- устанавливать в направлении течения теплоносителя по стрелке на корпусе вентиля
- не устанавливать вертикально вниз при установке вместе с сервоприводом
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа

Типоразмеры:


- С измерительной техникой «есо»:

Артикул	DN	Присоед. размер	k _{vs} , м³/ч	∆р _{тах} , бар
114 50 04	15	Rp ⅓	0.45	1.0
114 51 04	15	Rp ½	1.00	1.0
114 52 04	15	Rp 1/2	1.80	1.0
114 53 61	15	G ¾	0.45	1.0
114 53 62	15	G ¾	1.00	1.0
114 53 63	15	G ¾	1.80	1.0
114 54 65	20	G 1	5.50	1.0

- С измерительной техникой «classic»:

Артикул	DN	Присоед. размер	k _{vs} , м³/ч	∆р _{тах} , бар
114 50 74	15	Rp 1/2	0.45	1.0
114 51 74	15	Rp 1/2	1.00	1.0
114 52 74	15	Rp 1/2	1.80	1.0
114 53 71	15	G ¾	0.45	1.0
114 53 72	15	G ¾	1.00	1.0
114 53 73	15	G ¾	1.80	1.0
114 54 75	20	G 1	5.50	1.0

Размеры:

Описание:

Регулирующие 2-ходовые резьбовые вентили «Нусосоп HTZ» с установленными сервоприводами предназначены для работы в качестве регуляторов температуры воздуха. Кроме базовой функции регулятора температуры имеют функцию ограничения расхода теплоносителя путем выбора соответствующей преднастройки. Оснащены измерительной техникой «есо», посредством которой могут быть подключены к измерительным устройствам «OV-DMC 2» и «OV-DMPC» для измерения расхода теплоносителя. Не являются запорным устройством.

Регулировочная характеристика: равнопроцентная

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +120 °C Минимальная рабочая температура -10 °C PN 16 бар

Функции:

- Регулирование температуры воздуха
- Ограничение расхода теплоносителя
- Измерение расхода теплоносителя

Подключение привода:

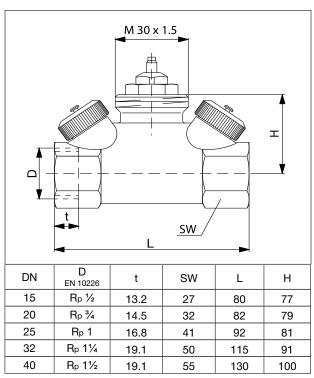
Присоединительная резьба: М 30х1,5

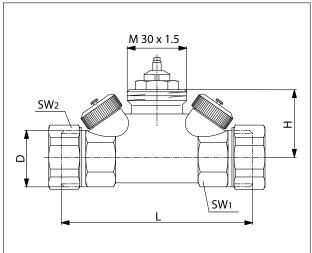
Ход штока вентиля:
- 3 мм (DN 15-25)
- 4 мм (DN 32-40)

Потребное усилие привода: 90-150Н

Материалы:

Корпус: латунь Ms-EZB


Шпиндель: нержавеющая сталь


Уплотнения: EPDM

Типоразмеры:

Артикул	DN	Присоед. размер	k _{vs} , м³/ч	∆p _{max} , бар
106 85 64	15	Rp 1/2	1.7	5.0
106 85 66	20	Rp 3/4	2.7	5.0
106 85 68	25	R _p 1	3.6	5.0
106 85 70	32	Rp 11/4	6.8	3.0
106 86 72	40	Rp 11/2	10.0	2.0
106 86 64	15	G ¾	1.7	5.0
106 86 66	20	G 1	2.7	5.0
106 86 68	25	G 1¼	3.6	5.0
106 86 70	32	G 1½	6.8	3.0
106 86 72	40	G 1¾	10.0	2.0

Размеры:

DN	D ISO 228	L	Н	SW ₁	SW ₂	d
15	G ¾	95	77	27	30	38
20	G 1	98	79	32	37	38
25	G 1¼	105	81	41	46	38
32	G 1½	129	91	50	52	38
40	G 1¾	145	100	55	58	50

Комплектующие:

Описание	DN	Артикул
	15	106 05 92
	20	106 05 93
Набор из 2-х втулок под сварку	25	106 05 94
	32	106 05 95
	40	106 05 96
	15 (15 мм)	106 10 92
	20 (18 мм)	106 10 93
Набор из 3-х втулок под пайку	20 (22 мм)	106 10 94
паоор из 3-х втулок под паику	25 (28 мм)	106 10 95
	32 (35 мм)	106 10 96
	40 (42 мм)	106 10 97
	15 (Rp ½)	106 14 92
Набор из 2 у втупок о наружной	20 (Rp ¾)	106 14 93
Набор из 2-х втулок с наружной резьбой	25 (Rp 1)	106 14 94
possess.	32 (Rp 11/4)	106 14 95
	40 (Rp 1½)	106 14 96
	15 (Rp ½)	106 13 92
Набор из 2-х втулок с	20 (Rp ¾)	106 13 93
внутренней резьбой	25 (Rp 1)	106 13 94
	32 (Rp 11/4)	106 13 95

- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа

Регулирующие 2- и 3-ходовые фланцевые вентили с установленными сервоприводами предназначены для работы в качестве регуляторов температуры воздуха. Поставляются в 2-ходовом исполнении с заглушенным портом В, с которого может быть демонтирована по необходимости заглушка. Могут работать как в режиме смесительного, так и в режиме разделительного регулирующего вентиля, но с различными значениями максимального допустимого перепада давления.

Регулировочная характеристика:

А→АВ: равнопроцентная

В-АВ: линейная

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +130 °C Минимальная рабочая температура 0 °C PN 16 бар

Функции:

- Регулирование температуры воздуха

Подключение привода:

Присоединительная резьба: М 30х1,5

Ход штока вентиля:

- 10 мм (DN 15-50)
- 30 мм (DN 65-100)
- 40 мм (DN 125-150)

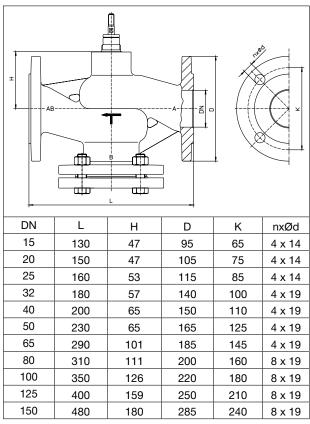
Потребное усилие привода:

- 500 H (DN 15-50)
- 2000 H (DN 65-150)

Материалы:

Корпус: серый чугун EN-GJL-250 Шпиндель: нержавеющая сталь

Уплотнения:


- седло: металл по металлу (DN 15-50), EPDM (DN 65-150)

- шпиндель: EPDM

Указания по монтажу:

- не устанавливать вертикально вниз при установке вместе с сервоприводом
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа

Размеры:

Устройство:

Когда используется как 2-ходовой регулирующий вентиль, имеет входной порт A и выходной порт AB. Проток в направлении A—AB полностью открыт при нижнем положении штока. Когда используется как 3-ходовой смесительный регулирующий вентиль, имеет два входных порта A и В и один выходной порт AB. При нижнем положении штока проток в направлении А—AB полностью открыт, проток в направлении В—AB полностью закрыт. При верхнем положении штока наоборот. Когда используется как 3-ходовой распределительный регулирующий вентиль, имеет один входной порт AB и два выходных порта A и В. При нижнем положении штока проток в направлении AB—A полностью открыт, проток в направлении AB—B полностью закрыт. При верхнем положении штока наоборот.

Типоразмеры:

A		N K _{vs} ,	Δp _{max} , бар		
Артикул	DN	м³/ч	2-ходовой/ смесительный	разделительный	
113 08 75	15	1.0	12.1	6.0	
113 08 65	15	1.6	12.1	6.0	
113 08 45	15	2.5	12.1	6.0	
113 08 66	20	4.0	9.2	4.5	
113 08 46	20	6.3	9.2	4.5	
113 08 47	25	10.0	5.0	2.5	
113 08 48	32	16.0	3.5	1.7	
113 08 49	40	25.0	1.5	0.7	
113 08 50	50	35.0	0.7	0.3	
113 08 51	65	63.0	5.6	2.8	
113 08 52	80	100.0	3.6	1.8	
113 08 53	100	160.0	2.2	1.1	
113 08 54	125	220.0	1.3	0.6	
113 08 55	150	320.0	0.8	0.4	

Описание:

Регулирующие 3-ходовые резьбовые распределительные вентили «Tri-D TR» с установленными сервоприводами предназначены для работы в качестве регуляторов температуры воздуха. Могут работать только в режиме разделительного регулирующего вентиля.

Регулировочная характеристика:

I→II: линейная (условно) I→III: линейная (условно)

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и pH 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +130 °C Минимальная рабочая температура 0 °C PN 16 бар

Функции:

- Регулирование температуры воздуха

Подключение привода:

Присоединительная резьба: М 30х1,5

Ход штока вентиля: 2.8 мм

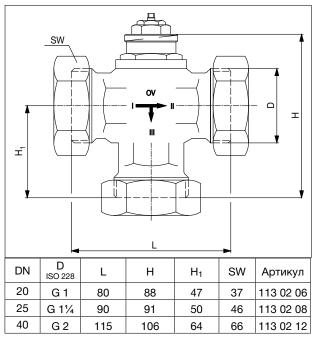
Потребное усилие привода: 90-150 Н

Материалы:

Корпус: бронза

Шпиндель: нержавеющая сталь

Уплотнения: EPDM


Типоразмеры:

· ····opaomopan			
Артикул	DN	k _{vs} , м³/ч	∆p _{max} , бар
113 02 06	20	4.5	0.75
113 02 08	25	6.5	0.5
113 02 12	40	9.5	0.2

Комплектующие:

Описание	DN	Артикул
	20	113 00 93
Набор из 2-х втулок под сварку	25	113 00 94
	40	113 00 96
	20 (15)	113 01 92
	20 (18)	113 01 93
Набор из 2-х втулок под пайку	20 (22)	113 01 94
Паоор из 2-х втулок под паику	25 (28)	113 01 95
	40 (35)	113 01 96
	40 (42)	113 01 97
	20	113 02 92
Набор из 2-х втулок с наружной	20	113 02 93
резьбой	25	113 02 94
posson	40	113 02 95
	40	113 02 96

Размеры:

Устройство:

Используется как 3-ходовой распределительный регулирующий вентиль, имеет один входной порт I и два выходных порта II и III. При верхнем положении штока проток в направлении $I \rightarrow II$ полностью открыт, проток в направлении $I \rightarrow III$ полностью закрыт. При нижнем положении штока наоборот.

- не устанавливать вертикально вниз при установке вместе с сервоприводом
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа

Описание:

Регулирующие 3-ходовые резьбовые распределительные вентили «Tri-M TR» с установленными сервоприводами предназначены для работы в качестве регуляторов температуры воздуха. Могут работать только в режиме разделительного регулирующего вентиля.

Регулировочная характеристика:

I→II: линейная (условно) I→III: линейная (условно)

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и pH 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +130 °C Минимальная рабочая температура 0 °C PN 16 бар

Функции:

- Регулирование температуры воздуха

Подключение привода:

Присоединительная резьба: М 30х1,5

Ход штока вентиля: 2.8 мм

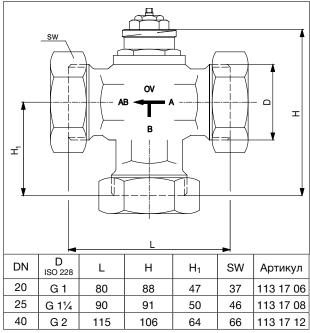
Потребное усилие привода: 90-150 Н

Материалы:

Корпус: бронза

Шпиндель: нержавеющая сталь

Уплотнения: EPDM


Типоразмеры:

A	ртикул	DN	k _{vs} , м³/ч	Δp _{max} , бар
1	13 17 06	20	4.5	0.75
11	13 17 08	25	6.5	0.5
1	13 17 12	40	9.5	0.2

Комплектующие:

Описание	DN	Артикул
	20	113 00 93
Набор из 2-х втулок под сварку	25	113 00 94
	40	113 00 96
	20 (15 мм)	113 01 92
	20 (18 мм)	113 01 93
Набор из 2-х втулок под пайку	20 (22 мм)	113 01 94
Паоор из 2-х втулок под паику	25 (28 мм)	113 01 95
	40 (35 мм)	113 01 96
	40 (42 мм)	113 01 97
	20	113 02 92
Набар из 2 у ртупок о наружией	20	113 02 93
Набор из 2-х втулок с наружной резьбой	25	113 02 94
peoboon	40	113 02 95
	40	113 02 96

Размеры:

Используется как 3-ходовой распределительный регулирующий вентиль, имеет один входной порт I и два выходных порта II и III. При верхнем положении штока проток в направлении I→II полностью открыт, проток в направлении I→III полностью закрыт. При нижнем положении штока наоборот.

- не устанавливать вертикально вниз при установке вместе с сервоприводом
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа

Регулирующие 3-ходовые 4-портовые резьбовые распределительные вентили «Tri-D Plus TB» с установленными сервоприводами предназначены для работы в качестве регуляторов температуры воздуха. Могут работать только в режиме разделительного вентиля. Применяются в качестве готового узла обвязки фанкойла

Регулировочная характеристика:

I→II: линейная (условно) I→III: линейная (условно)

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +130 °C Минимальная рабочая температура -10 °C PN 16 бар

Функции:

- Регулирование температуры воздуха

Подключение привода:

Присоединительная резьба: М 30х1,5

Ход штока вентиля: 2.5 мм

Потребное усилие привода: 90-150 Н

Материалы:

Корпус: латунь

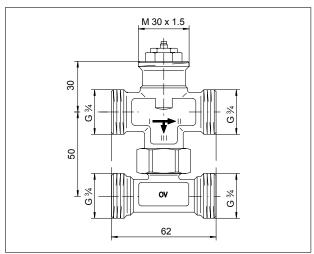
Шпиндель: нержавеющая сталь

Уплотнения: EPDM

Типоразмеры:

Артикул	DN	k _{vs} , м³/ч	∆p _{max} , бар
114 26 04	15	2.5	1.0

При раздельном заказе:


Описание	Артикул
Вентиль Tri-D ТВ	114 25 04
Тройник	114 25 61

Комплектующие:

Описание	DN	Артикул
	15 (10)	114 03 90
Набор из 3-х втулок под сварку	15 (12)	114 03 91
	15 (15)	114 03 92
Hafan ya 2 y prypay pap payyy	15 (12 мм)	114 01 91
Набор из 3-х втулок под пайку	15 (15 мм)	114 01 92
Набор из 3-х втулок с наружной резьбой	15	114 02 92

Размеры:

При верхнем положении штока проток в направлении $I \rightarrow II$ полностью открыт, проток в направлении $I \rightarrow III$ полностью закрыт. При нижнем положении штока наоборот.

- не устанавливать вертикально вниз при установке вместе с сервоприводом
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа

Регулирующие 3-ходовые резьбовые смесительные/ распределительные вентили «Tri-CTR» с установленными сервоприводами предназначены для работы в качестве регуляторов температуры воздуха. Могут работать как в режиме разделительного, так и смесительного регулирующего вентиля.

Регулировочная характеристика:

А→АВ: линейная (условно) В→АВ: линейная (условно)

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +120 °C Минимальная рабочая температура -10 °C PN 16 бар

Функции:

- Регулирование температуры воздуха

Подключение привода:

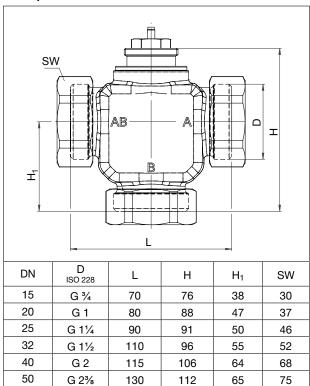
Присоединительная резьба: М 30х1,5

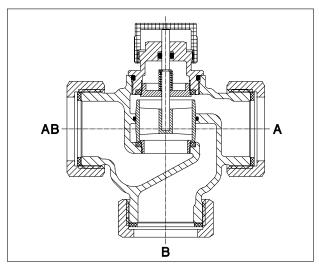
Ход штока вентиля: 2.8 мм

Потребное усилие привода: 90-150 Н

Материалы:

Корпус: бронза


Шпиндель: нержавеющая сталь


Уплотнения: EPDM

Типоразмеры:

Артикул	DN	k _{vs} , м³/ч
113 12 04	15	2.5
113 12 06	20	4.4
113 12 08	25	5.5
113 12 10	32	6.7
113 12 12	40	8.1
113 12 16	50	10.5

Размеры:

В режиме смесительного регулирующего вентиля имеет один выходной порт AB и два входных порта A и B. При верхнем положении штока проток в направлении $B \rightarrow AB$ полностью открыт, проток в направлении $A \rightarrow AB$ полностью закрыт. При нижнем положении штока наоборот.

В режиме распределительного регулирующего вентиля имеет один входной порт АВ и два выходных порта А и В. При верхнем положении штока проток в направлении АВ—В полностью открыт, проток в направлении АВ—А полностью закрыт. При нижнем положении штока наоборот.

Регулирующие 3-ходовые резьбовые смесительные/ распределительные вентили «Tri-CTR»

Комплектующие:

Описание	DN	Артикул
	15	113 00 91
	20	113 00 93
Набор из 3-х втулок под сварку	25	113 00 94
	40	113 00 96
	50	113 00 98
	15 (15 мм)	113 01 91
	20 (15 мм)	113 01 92
	20 (18 мм)	113 01 93
	20 (22 мм)	113 01 94
Набор из 3-х втулок под пайку	25 (28 мм)	113 01 95
	32 (35 мм)	113 01 99
	40 (35 мм)	113 01 96
	40 (42 мм)	113 01 97
	50 (54 мм)	113 01 98
	15	113 02 91
	20	113 02 92
	20	113 02 93
Набор из 3-х втулок с наружной	25	113 02 94
резьбой	32	113 02 99
	40	113 02 95
	40	113 02 96
	50	113 02 98

- не устанавливать вертикально вниз при установке вместе с сервоприводом
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа

Регулирующие 3-ходовые 4-портовые резьбовые распределительные вентили «Tri-M plus TR» с установленными сервоприводами предназначены для работы в качестве регуляторов температуры воздуха. Могут работать только в режиме разделительного вентиля. Применяются в качестве готового узла обвязки фанкойла

Регулировочная характеристика:

I→II: линейная (условно) I→III: линейная (условно)

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +120 °C Минимальная рабочая температура -10 °C PN 10 бар

Функции:

- Регулирование температуры воздуха

Подключение привода:

Присоединительная резьба: М 30х1,5

Ход штока вентиля: 2.5 мм

Потребное усилие привода: 90-150 Н

Материалы:

Корпус: латунь

Шпиндель: нержавеющая сталь

Уплотнения: EPDM

Типоразмеры:

Артикул	Артикул DN k _{vs} , м³/ч		∆р _{тах} , бар
114 27 51	15	0.45	1.0
114 27 52	15	1.00	1.0
114 27 53	15	1.80	1.0

Комплектующие:

		T
Описание	DN	Артикул
	15 (10)	114 03 90
Набор из 3-х втулок под сварку	15 (12)	114 03 91
	15 (15)	114 03 92
Hagan va 2 v andau an an an an	15 (12 мм)	114 01 91
Набор из 3-х втулок под пайку	15 (15 мм)	114 01 92
Набор из 3-х втулок с наружной резьбой	15	114 02 92

Размеры:

При верхнем положении штока проток в направлении $I \rightarrow II$ полностью открыт, проток в направлении $I \rightarrow III$ полностью закрыт. При нижнем положении штока наоборот.

- не устанавливать вертикально вниз при установке вместе с сервоприводом
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус вентиля
- принять меры для очистки рабочей среды от грязевых частиц во избежание засорения вентиля
- проверить соединения на герметичность после монтажа

Описание:

Шаровые резьбовые краны «Optibal» применяются в качестве запорных устройств в закрытых системах отопления, тепло- и холодоснабжения. Различаются по типу присоединения и конструкции рукоятки. Не могут быть использованы в качестве регулирующего устройства.

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +100 °C Минимальная рабочая температура -10 °C PN:

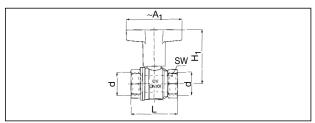
- 16 бар для DN 15-50
- 16 бар (70 °C), 12 бар (85 °C), 8 бар (100 °C) для DN 65-100

Функции:

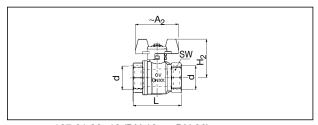
- отключение потребителя

Материалы:

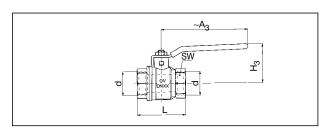
Корпус: никелированная латунь


Шаровая пробка: никелированная латунь

Уплотнения:
- седло: PTFE
- шпиндель: VITON


Типоразмеры:

Маховик пластмассовый удлиненный	Маховик алюминиевый	Рукоятка рычажная	DN	К _{VS} , м ³ /ч
107 71 04	107 61 04	107 60 04	15	22
107 71 06	107 61 06	107 60 06	20	43
107 71 08	107 61 08	107 60 08	25	67
107 71 10	107 61 10	107 60 10	32	99
107 71 12		107 60 12	40	143
107 71 16		107 60 16	50	254
		107 60 20	65	470
		107 60 24	80	720
		107 60 32	100	1120


Размеры:

артикул:107 71 03-16 (DN 10 до DN 50) Маховик пластмассовый, удлиненный

артикул: 107 61 03-10 (DN 10 до DN 32) Маховик алюминиевый

артикул: 107 60 02-32 (DN 8 до DN 100) Рукоятка рычажная из оцинкованной стали в пластмассовой оболочке

DN	d ISO 228	~H ₁	~H ₂	~H3	h ₁	h ₂	h ₃	Г	SW
8	G 1/4	-	-	100	-	-	38	39	20
10	G%	60	50	100	64	38.5	38	39	20
15	G ½	60	50	100	68	43	43	50	25
20	G ¾	80	60	120	73	49	50	54	31
25	G 1	80	60	120	77	53	54	67	38
32	G 11/4	120	-	160	114	-	73	77	48
40	G 1½	120	-	160	120	-	79	90	54
50	G 2	120	-	160	127	-	86	106	66
65	G 2½	-	-	250	-	-	134	136	85
80	G 3	-	-	250	_	-	141	157	99
100	G 4	-	-	250	-	-	156	191	125

- рекомендуется не реже двух раз в год выполнять процедуру открытия/закрытия крана
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения вентиля
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус крана
- проверить соединения на герметичность после монтажа

Описание:

Дисковые поворотные затворы межфланцевого исполнения применяются в качестве запорных устройств в закрытых системах отопления, тепло- и холодоснабжения. Управляются с помощью позиционируемого рычага или червячного редуктора (рекомендуемый вариант). Не могут быть использованы в качестве регулирующего устройства.

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +110 °C Минимальная рабочая температура -10 °C PN·

- 16 бар для DN 15-50
- 16 бар (70 °C), 12 бар (85 °C), 8 бар (100 °C) для DN 65-100

Функции:

- отключение потребителя
- настройка расхода рабочей среды

Материалы:

Корпус: чугун с шаровидным графитом GJS-500 шпиндель: нержавеющая сталь AISI420

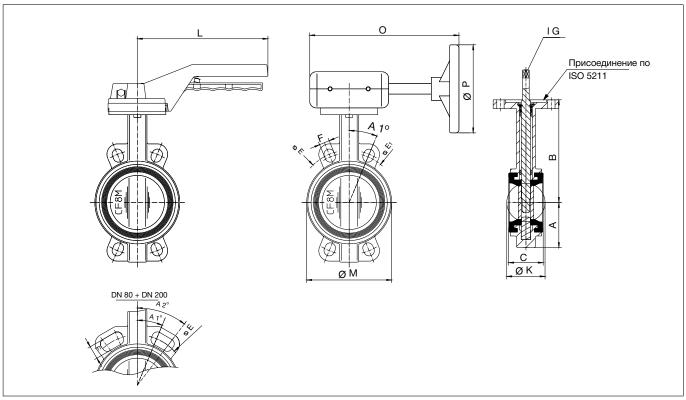
Затвор: нержавеющая сталь CF8M AISI316

Уплотнения:
- седло: EPDM
- шпиндель: EPDM

Типоразмеры:

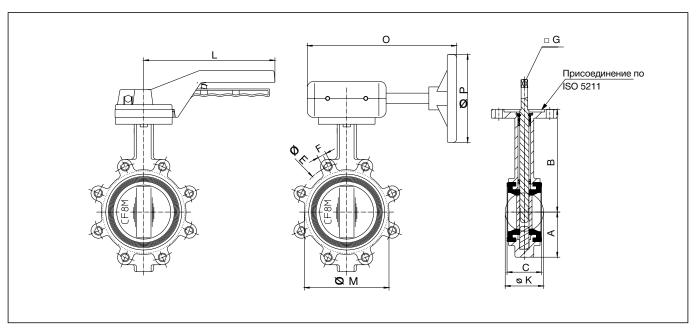
с резьбовыми	проушинами	с гладкими п	роушинами	DN	k _{vs} , м³/ч
с позициониру- емым рычагом	с червячным редуктором	с позиционируе- мым рычагом	с червячным редуктором		
104 82 50	104 89 50	104 62 50	104 69 50	50	108
104 82 51	104 89 51	104 62 51	104 69 51	65	198
104 82 52	104 89 52	104 62 52	104 69 52	80	330
104 82 53	104 89 53	104 62 53	104 69 53	100	545
104 82 54	104 89 54	104 62 54	104 69 54	125	890
104 82 55	104 89 55	104 62 55	104 69 55	150	1410
	104 89 56		104 69 56	200	2356
	104 89 57		104 69 57	250	3780
	104 89 58		104 69 58	300	5590
	104 89 59			350	8080
	104 89 60			400	10533

Размеры:


Дисковый поворотный затвор DN 50 до DN 300 с 4 присоединительными отвестиями (на рис.с рычагом)

Дисковый поворотный затвор DN 50 до DN 400 с 8 присоединительными отвестиями (на рис.с червячной передачей)

- рекомендуется устанавливать затворы таким образом, чтобы ось вращения заслонки диска была расположена горизонтально во избежание образования грязевой пробки в местах крепления оси заслонки
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения затвора
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус затвора
- проверить соединения на герметичность после монтажа


Размеры:

Исполнение с 4 присоединительными отверстиями:

DN	Α	В	С	ØE	Ø E ₁	A 1°	A 2°	F	□G	Øκ	L	М	0	ØР
50	61	141	43	125	-	45	-	18	9	52.6	200	92	205	134
65	72	153	46	145	-	45	-	18	9	64.4	200	104	205	134
80	87	161	46	160	-	22.5	45	18	9	78.9	200	123	205	134
100	106	178	52	180	-	22.5	-	18	11	104.1	200	154	205	134
125	123	191	56	210	-	22.5	-	18	11	123.4	200	180	205	134
150	137	201	56	240	-	22.5	-	23	11	155.9	200	203	205	134
200	174	247	60	295	-	15	22.5	23	17	202.9	320	267	296	215
250	209	280	68	355	350	15	-	27	22	250.9	356	316	296	215
300	253	324	78	410	400	15	-	27	22	301.9	356	366	296	215

Исполнение с 8 присоединительными отверстиями:

DN	А	В	С	ØE	F	□G	ØΚ	L	Ø M	0	⊗ P
50	62	141	43	125	M16	9	52,6	200	92	205	134
65	72	153	46	145	M16	9	64,4	200	104	205	134
80	87	161	46	160	M16	9	78,9	200	121	205	134
100	106	178	52	180	M16	11	104,1	200	152	205	134
125	123	191	56	210	M16	11	123,4	200	181	205	134
150	139	201	56	240	M20	11	155,9	200	200	205	134
200	174	247	60	295	M20	17	202,9	320	260	296	215
250	207	280	68	355	M24	22	250,9	-	315	296	215
300	250	324	78	410	M24	22	301,9	-	374	296	215
350	272	368	78	470	M25	22	334	-	-	307	300
400	310	400	86	525	M27	22	390,1	-	-	-	300

Резьбовые сетчатые фильтры со сливной пробкой применяются в качестве фильтрующих устройств грубой очистки в закрытых системах отопления, тепло- и холодоснабжения. Отличаются типом используемых сетчатых патронов, задающих степень очистки рабочей среды.

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +150 °C Минимальная рабочая температура -10 °C PN 25 бар

Функции:

- фильтрация рабочей среды

Материалы:

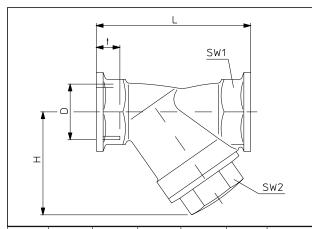
Корпус:

- бронза (DN 15-50)
- латунь (DN 65-80)

Сливная пробка: латунь

Сетчатый патрон: нержавеющая сталь

Типоразмеры:


- с одинарным сетчатым патроном:

Артикул	DN	k _{vs} , м³/ч
112 00 04	15	3.80
112 00 06	20	7.80
112 00 08	25	13.40
112 00 10	32	23.90
112 00 12	40	32.50
112 00 16	50	56.20
112 00 20	65	101.30
112 00 24	80	133.60

- с двойным сетчатым патроном:

- 11									
Артикул	DN	k _{vs} ,м³/ч							
112 10 04	15	3.80							
112 10 06	20	7.80							
112 10 08	25	13.40							
112 10 10	32	23.90							
112 10 12	40	32.50							
112 10 16	50	56.20							
112 10 20	65	101.30							
112 10 24	80	133.60							

Размеры:

DN	D	L	t	Н	SW ₁	SW ₂
8	G 1/4	56	11	34	21	17
10	Rp ⅔	63.5	10.1	34	22	17
15	Rp 1/2	66.5	13.2	42	27	22
20	Rp 3/4	76.5	14.5	52	32	27
25	G 1	90	15	61	38	32
32	G 11/4	112	18	73	47	41
40	G 1½	120	18	82	54	46
50	G 2	150	22	94	66	56
65	G 21/2	221	23	116	85	70
80	G 3	254	26	134	100	75

- рекомендуется устанавливать сливной пробкой вниз
- устанавливать в направлении течения теплоносителя по стрелке на корпусе вентиля
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения фильтра
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус фильтра
- проверить соединения на герметичность после монтажа

Фланцевые сетчатые фильтры со сливной пробкой применяются в качестве фильтрующих устройств грубой очистки в закрытых системах отопления, тепло- и холодоснабжения.

Рабочая среда:

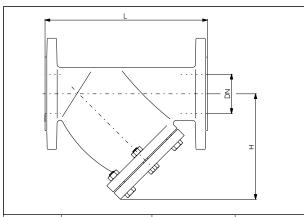
- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +120 °C Минимальная рабочая температура 0 °C PN 16 бар

Функции:

- фильтрация рабочей среды


Материалы:

Корпус: серый чугун EN GJL-250 Сливная пробка: серый чугун EN GJL-250 Сетчатый патрон: нержавеющая сталь

Типоразмеры:

Артикул	DN	k _{vs} , м³/ч
112 20 45	15	7.00
112 20 46	20	10.00
112 20 47	25	15.00
112 20 48	32	21.00
112 20 49	40	39.00
112 20 50	50	60.00
112 20 51	65	105.00
112 20 52	80	140.00
112 20 53	100	225.00
112 20 54	125	340.00
112 20 55	150	405.00
112 20 56	200	715.00
112 20 57	250	1355.00
112 20 58	300	1890.00

Размеры:

DN	Размер ячейки	L	Н			
15	1.0	130	85			
20	1.0	150	90			
25	1.0	160	95			
32	1.0	180	105			
40	1.5	200	120			
50	1.5	230	148			
65	1.5	290	193			
80	1.5	310	205			
100	1.5	350	245			
125	1.5	400	295			
150	1.5	480	325			
200	2.0	600	390			
250	2.0	730	460			
300	2.0	850	500			
350	3.0	960	740			
400	3.0	1079	840			
450	3.0	1168	910			
500	3.0	1275	968			
600	3.0	1450	1160			

- рекомендуется устанавливать сливной пробкой вниз
- устанавливать в направлении течения теплоносителя по стрелке на корпусе фильтра
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения фильтра
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус фильтра
- проверить соединения на герметичность после монтажа

Резьбовые обратные клапаны с косой врезкой, пружинной конструкции, применяются для предотвращения противотока теплоносителя в системах со смесительными 3-ходовыми регулирующими вентилями.

Рабочая среда:

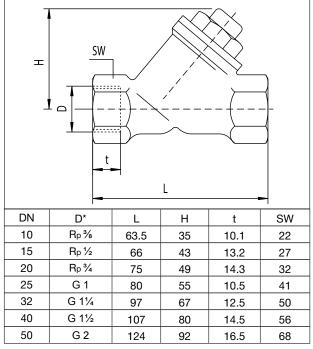
- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +100 °C Минимальная рабочая температура 0 °C PN 25 бар

Функции:

- предотвращение противотока теплоносителя


Материалы:

Корпус: бронза Компоненты: латунь

Типоразмеры:

Артикул	DN	k _{vs} , м³/ч
107 20 04	15	3.80
107 20 06	20	6.00
107 20 08	25	13.00
107 20 10	32	17.00
107 20 12	40	19.00
107 20 16	50	30.50

Размеры:

- устанавливать в направлении течения теплоносителя по стрелке на корпусе клапана
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения клапана
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус клапана
- проверить соединения на герметичность после монтажа

Фланцевые обратные клапаны с прямой врезкой, пружинной конструкции, применяются для предотвращения противотока теплоносителя в системах со смесительными 3-ходовыми регулирующими вентилями.

Рабочая среда:

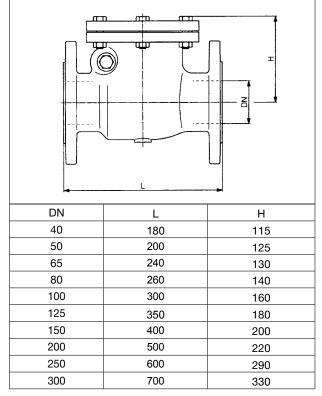
- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +120 °C Минимальная рабочая температура -10 °C PN 16 бар

Функции:

- предотвращение противотока теплоносителя


Корпус: серый чугун EN-GJL-250 Компоненты: нержавеющая сталь

Уплотнения: EPDM

Типоразмеры:

Артикул	DN	k _{vs} , м³/ч
107 30 49	40	85.00
107 30 50	50	132.00
107 30 51	65	326.00
107 30 52	80	490.00
107 30 53	100	770.00
107 30 54	125	1020.0
107 30 55	150	1700.0
107 30 56	200	2410.0
107 30 57	250	3870.0
107 30 58	300	5670.0

Размеры:

- устанавливать в направлении течения теплоносителя по стрелке на корпусе клапана
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения клапана
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус клапана
- проверить соединения на герметичность после монтажа

Сливные шаровые краны «Optiflex» применяются для слива (заполнения) теплоносителя из закрытых систем. Оснащены адаптером для подключения гибкого шланга.

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

Максимальная рабочая температура +120 °C Минимальная рабочая температура 0 °C PN 16 бар

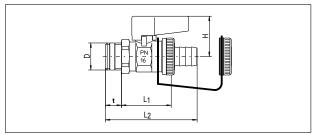
Функции:

- слива (заполнения) теплоносителя из закрытых систем

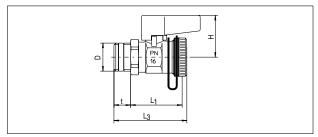
Материалы:

Корпус: латунь Шпиндель: латунь Шаровая пробка: латунь

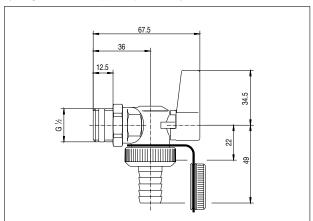
Уплотнения:
- Седло: PTFE
- Шпиндель: EPDM


Типоразмеры:

Артикул	DN	Исполнение
103 33 13	10	проходной
103 33 14	15	проходной
103 33 16	20	проходной
103 33 08	25	проходной
103 34 13	10	проходной
103 34 14	15	проходной
103 34 16	20	проходной
103 34 08	25	проходной
103 36 14	15	угловой
103 36 52	15	угловой


Указания по монтажу и эксплуатации:

- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения затвора
- соблюдать действующие нормы при выборе рабочей среды
- проверить соединения на герметичность после монтажа


Размеры:

артикул: 103 33 . . (DN 10 до DN 25), без покрытия артикул: 103 33 5 . (DN 10 до DN 15), никелированный со штуцером под шланг (мягкое уплотнение) и колпачком

артикул: 103 34 . . (DN 10 до DN 25), без покрытия артикул: 103 34 52 (DN 15), никелированный с колпачком

арт.: 103 36 14 (DN 15), без покрытия арт.: 103 33 52 (DN 15), никелированный

со штуцером под шланг (мягкое уплотнение) и колпачком

			•		•	
DN	D	L ₁	L ₂	L ₃	t	Н
10	G%	38.5	71.5	61.5	12.5	31
15	G ½	38.5	71.5	61.5	12.5	31
20	G ¾	49.5	91.5	69.5	13.5	34
25	G 1	60.5	123.5	88.5	17.5	53

Автоматические воздухоотводчики применяются для удаления кислорода из закрытых систем в целях стабилизации гидравлического режима их работы, а также повышения срока службы элементов трубопроводной системы, склонных к коррозии. Различают варианты исполнения с функцией автозапора и без нее.

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

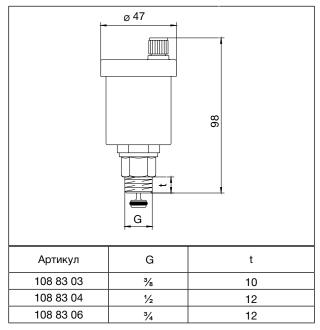
Максимальная рабочая температура $+100\,^{\circ}\text{C}$ Минимальная рабочая температура $0\,^{\circ}\text{C}$ PN $10\,\text{бар}$

Функции:

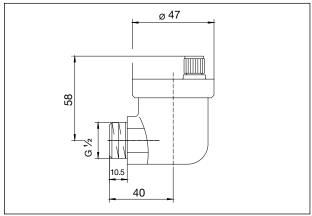
- удаление кислорода из закрытых систем

Материалы:

Корпус: латунь


Типоразмеры:

Артикул	DN	Исполнение	Присоед. размер	Автозапор
108 83 03	10	проходной	G %	есть
108 83 04	15	проходной	G ½	есть
108 83 06	20	проходной	G ¾	есть
108 84 04	15	угловой	G ½	нет
108 82 03	10	проходной	G %	есть


Указания по монтажу и эксплуатации:

- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения затвора
- соблюдать действующие нормы при выборе рабочей среды
- проверить соединения на герметичность после монтажа

Размеры:

артикул: 108 83 03-06

артикул: 108 84 04

артикул: 108 82 03

Пробковые краны под манометры с фланцем для контрольных измерений предназначены для подключения показывающих манометров. Имеют фланец для дополнительного подключения контрольного манометра.

Рабочая среда:

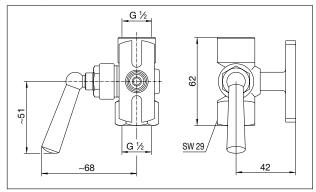
- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

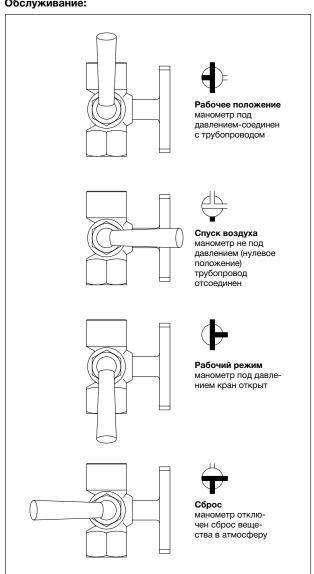
Максимальная рабочая температура +120 °C Минимальная рабочая температура 0 °C PN 10 бар

Функции:

- слива (заполнения) теплоносителя из закрытых систем


Материалы:

Корпус: латунь CW617N


Типоразмеры:

Артикул	Исполнение	DN	Присоединит. размеры
111 02 04	3-ходовой	15	G ½

Размеры:

Обслуживание:

Колпачковые клапаны «Expa-Con» предназначены для подключения расширительных баков к закрытым системам

Рабочая среда:

- Вода со значением рН 6.5-10
- Этиленгликоль с концентрацией до 50% и рН 6.5-10
- Пропиленгликоль с концентрацией до 50% и рН 6.5-10

Параметры рабочей среды:

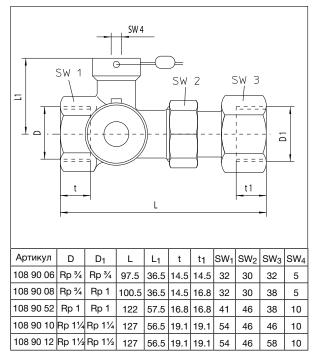
Максимальная рабочая температура +120 °C Минимальная рабочая температура 0 °C PN 10 бар

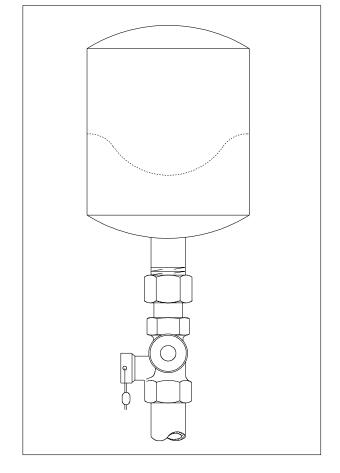
Функции:

- подключение расширительного бака
- отключение расширительного бака для замены мембраны
- слив теплоносителя
- пломбировка

Материалы:

Корпус: латунь CW617N


Типоразмеры:


см. размеры

Указания по монтажу и эксплуатации:

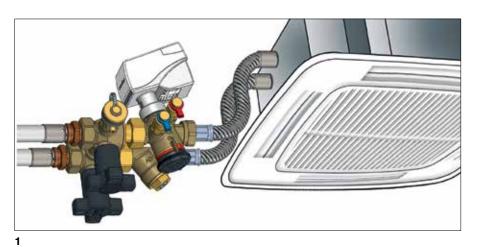
- при монтаже не использовать масла и смазки, т.к. они могут повредить уплотнения клапана
- соблюдать действующие нормы при выборе рабочей среды
- исключить механическое воздействие трубопровода на корпус клапана
- проверить соединения на герметичность после монтажа

Размеры:

_	Oventron pourtage as		-				65	41.15.7						1	2	3	4
	. Oventrop-вентили и п . Oventrop-вентили с п	•							вол	/TE	пеі	á.	изображение		_		
2	при соблюдении пара комбинация с привод	амет ами	гро	ов на руги	х пр	IX B	ент 13ВО	иле		11e	леи	1.	(примеры)				
	телей возможна посл		HC	уль	тац	ии.		4	4	7	*						
	h = ход штока вентиля x = нижнее положение штока вентиля							#	Ш	7	i	параметры вентилей	"Hycocon ETZ"	"Hycocon HTZ"	"Cocon 2TZ"	"Cocon QTZ"	
3	в. Oventrop-приводы с									_			Apt. №	106 83 – 106 84	106 85 – 106 86	114 50 – 114 54	114 55–114 62
	производителей: пос												Ду	15-25	15-25/32/40	15/20	10/15/20/25/32
4	 Интеграция в систем четыре основных па 												соединение	M 30 x 1,5	M 30 x 1,5	M 30 x 1,5	M 30 x 1,5
	Исходя из этого под												ход закрытия х [мм]	11,8	11,8	11,8	11,8
	3.11.												∆р макс [бар]	1	5/3/2	1	4
1	NC = нормально закр											й	ход штока вентиля h [мм]	2,2	3/4/4	2,5 / 3,5	2,8 / 2,8 / 2,8 / 3,5 / 4 / 4
(2	ЭМ = электромоторн Управление: дополн									кии	1		PN	16	16	10	16
(3	Необходим вент. ада	птер								1 2	9 9	2).	а⊈ нижнее	14,0 или более	15,8 или более	14,3 или более	14,6/15,8 или более
	k _{vs} -может уменьшить Регулирующий ход ≥		bei	ктив	зны	йх	ОД	што	кан	зен	тил	пя	положен. штока [мм] усилие закрытия [Н]	11,3 или менее	11,3 или менее	11,3 или менее	11,3 или менее
_	параметры			етры дл		_		_				0	мин/макс характеристики	90 / 150	90 / 150	90 / 150	90 / 150
	приводов	(ние	тип управления	_	нимнее положен. штока (им	ниезнее положен. штока (мм	регулирующий ход [мм]	филие закрытия [тт]	класс защиты	с. темп. среды [°С]	положение при монтаж	вентилей	похова	пожова	зффективн. ход штока	я эффективн. ход штока
	(примеры)	ap.	\pm	8	H.	16591	П	hed .	96	ж	Marc.	non.	приводов	¹⁰ эффективн. ход штока	эффективн. ход штока	- эффективн. ход штока	 эффективн. ход штока
Α		101 29	2 S	24 B / 230 E	цифровой	9 13	13,5 17,5	4,5	~6 мин	IP54	+100		о управление	• 3	• 3	•	•
В	"Aktor T 2P L NO"/ "Aktor T 2P H NO"	101 29	ON E	24 B / 230 B	цифровой	9 13	13,5 17,5	4,5	-6 мин	IP54	+100		управление	•	• 3	•	•
С		101 28	2 2	24 B / 230 B	цифровой	11,2	15,2	, 6	~4,5 мин	IP54	+100	любое	управление	•	Ф Ду 32 + 40 ④	•	• Ду 25 + 32 ④
D	"Aktor T 2P L NO"/"Aktor T 2P H NO"	101 28	ON S	24 B / 230 B	цифровой	11,2	15,2	, 8	~4,5 мин	IP54	+100		управление	•	Ф Ду 32 + 40 ④	•	Ф Ду 25 + 32 ④
E		101 29 52 TO MC	G NC	24 В постоян. (0–10 В)	аналоговый	11,2	15,8	0,4	~40 c/mm	IP54	+100		управление	•	• 6	• 6	•
F	"Aktor M ST L"	101 27 05	MD C	24 В постоян. (0–10 В)	аналоговый	11,2	15,8	0,5 - 4,0		IP40	+100		управление	•	•	•	•
G	"Aktor M ST L"	101 27 06	N. C.	24 В постоян. (0–10 В)	аналоговый	11,2	15,8	0,5 - 4,0	~15 c/mm	IP40	+100		управление	•	•	•	•
Н	"Aktor M3P L"	101 27 08	N. C	3-103ML	цифровой	11,2	15,8	, 6	~15 c/mm	IP40	+100		управление	•	•	•	•
I	"Aktor M3P H"	101 27 09	ME G	3-позиц	цифровой	11,2	15,8	. 6	~15 c/mm	IP40	+100	но вниз	управление	•	•	•	•
J	"Aktor M 3P H"	101 27 03	MD G	3-noami.	цифровой	11,2	14,8	, 8	~60 c/mm	IP40	+110	любое, кроме вертикально вниз	управление	•	Ф Ду 32 + 40 ④	Ф Ду 20 ④	• Ду 25 + 32 ④
K	"Aktor M 2P H"/"Aktor M 2P L"	101 27 10 / 11	ON ME	230 B / 24 B	цифровой	11,2	17,0	, 8	~3℃	IP54	+100	любое, к	управление	•	•	•	•
L	"Aktor M ST EIB"	115 60	M.S.	24 B	EIB / KNX	11,2	15,2	2,6 – 4,0	~30 c/mm	IP44	+100		управление	•	•	•	•
М	"Aktor M ST LON"	115 70 65	N.O.	ном. 48 В	LON	11,2	15,2	2,6 - 4,0	~30 c/mm	IP44	+100		управление	•	•	•	•
N		115 06 65	MD ,	батарейки (2x)	бе спроводной (ЕлОсе ал)	11,0	16	1 9	~3 c/mm	IP20	06 +		управление	•			
_	е данные без учета д									-							

Все данные без учета допустимых отклонений от номинальных значений

	e	-		0
5	6	7	8	9
	_		-	
-757	- 	8	PAGE 1	
	u _m u	USES18	Hr - 19-1	
R/ L/R	e — e		- THE	
	100		4.0	-
"Tri-M plus TR"	"Tri-D plus TB"	"Tri-DTR/Tri-MTR"	"Tri CTR"	серия "КТВ"
114 27	114 26	113 02/113 17	113 12	114 17-114 19
15	15	20/25/40	15-50	15/20/25
M 30 x 1,5	M 30 x 1,5	M 30 x 1,5	M 30 x 1,5	M 30 x 1,5
11,8	11,8	11,8	11,8	12,8
1	1	0,75/0,5/0,2		0,5
2,5	2,5	2,8	2,8	2,5
10	16	16	16	10
14,3 или более	14,3 или более	14,6 или более	14,6 или более	13,3 или более
11,3 или менее	11,3 или менее	11,3 или менее	11,3 или менее	10,8 или менее
90 / 150	90 / 150	90 / 150	90 / 150	90 / 150
	1	1		
	$ 1 \times $		$ \times $	
4 эффективня нед вежници	* эффектов, жар волите	* эффективн. над вентиги	* эффективн, жуд волгили	Jobbonsen with sources
•	•	•	•	
		_		
•	•	•	•	•
_	_	_	_	
•	•	•	•	
	_		_	
•	•	•	•	•
				(4)
				•
_			_	
•	•	•	•	
(6)	8	(5)	(3)	
_	_		_	
•	•	•	•	
•	•	•	•	
			-	
•	•	•	•	
	_	_	_	
•	•	•	•	
_	_			
•	•			
	_			
•	•	•	•	•
				(4)
_	_			
_	•	•	•	
•	•	•	•	
		-	-	

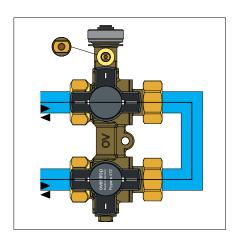


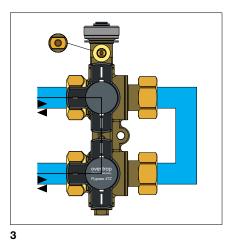
«Flypass 4TZ»

Присоединительный узел для подключения и регулирования производительности фанкойлов

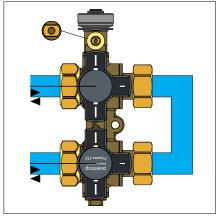
Присоединительный узел Oventrop «Flypass 4TZ» предназначен для подключения фанкойлов, систем потолочного охлаждения, к трубопроводу центральной системы охлаждения или отопления закрытого типа. Направление потока не имеет значения.

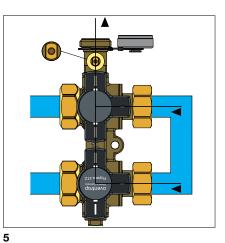
«Flypass 4TZ» может быть установлен в любом положении (на вертикальных, горизонтальных или наклонных участках).


В базовой комплектации состоит из двух 3-х портовых Т-образных шаровых кранов и одного крана для слива или заполнения системы, подключенного сбоку.


Технические достоинства

- быстрый монтаж и легкая настройка
- благодаря конструкции узел имеет 10 режимов работы (перекрытие, слив, заполнение, промывка системы
- присоединение с плоским уплотнением позволяет осуществить подключение без дополнительных уплотнений
- доступно 7 различных наборов
- удлиненные рукоятки позволяют легко теплоизолировать узел
- возможность измерения перепада давления (при использовании дополнительного сливного шарового крана)


Рабочие характеристики - DN 15, DN 20


- **PN 16**
- рабочая температура -10...+120 °C
- 1 Подключение фанкойла узлом «Flypass Set 1»
- 2 Пример работы узла в нормальном режиме.
- 3 Пример работы узла в байпасном режиме. 4 Пример работы узла при полном пере-
- крытий потребителя. 5 Пример работы узла в режиме пере-
- крытия и промывки потребителя.

2

Представительство КТ «Овентроп ГмбХ и Ко. КГ» 109456 Москва

Рязанский проспект, д. 75, корп. 4 Телефон (495) 984-54-50 Телефакс (495) 984-54-51 E-mail info@oventrop.ru Internet www.oventrop.ru