Scheda tecnica

Descrizione:

Valvola deviatrice a tre vie Oventrop "Tri-D TB" e "Tri-D plus TB" con raccordo a T, PN 16 fino a 120 °C, per breve tempo fino a 130

Attacco filettato M 30 x 1,5

Corpo valvola in ottone, otturatore conico valvola e guarnizione O-Ring in EPDM, asta del vitone in acciaio inossidabile.

Collegamento per tubi in rame o acciaio di precisione, tubi in plastica e per tubo multistrato Oventrop "Copipe" con raccordi di serraggio con filettatura maschio da ¾"M Eurocono.

Sono inoltre utilizzabili boccole filettate, da brasare e ad innesto con calotta o con raccordo a T.

Dati tecnici:

Temperatura max. d'esercizio t_S: 120 °C (brevemente fiino 130 °C)

Temperatura min. d'esercizio t_s : -10 °C Pressione max. d'esercizio p_s : 16 bar (PN 16) Pressione differenziale max. Δp_v : 1 bar

Modelli Cod. art: "Tri-D TB" 114 25 04 raccordo a T 114 25 61

Campo d'impiego:

Impianti di riscaldamento centralizzati bitubo e impianti di raffrescamento a soffitto a circolazione forzata ("Tri-D TB").

Impianti di riscaldamento centralizzati bitubo, impianti fancoil e impianti di raffrescamento a soffitto a circolazione forzata ("Tri-D plus

Per deviare e/o commutare il flusso in impianti di riscaldamento bivalenti o accumulatori, p.es. negli impianti solari e con pompe di

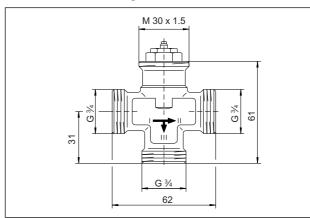
Con regolatori di temperatura Oventrop per regolare la portata negli aerotermi.

In combinazione a servomotori e regolatori di temperatura, vengono impiegate per la regolazione della temperatura di mandata in sistemi di raffrescamento a pannelli radianti.

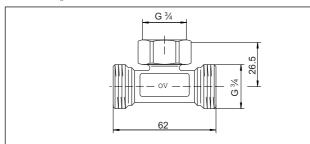
Funzionamento:

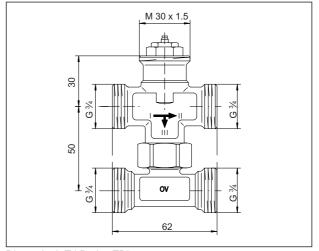
Le valvole deviatrici a tre vie Oventrop "Tri-D TB" sono dotate di un ingresso e due uscite. Il fluido passante viene deviato verso l'una o l'altra uscita a seconda della posizione dell'otturatore della valvola.

Servomotori:

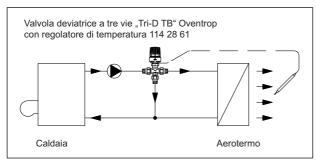

Le valvole deviatrici a tre vie Oventrop "Tri-D TB" possono essere collegate ai seguenti servomotori Oventrop (M 30 x 1,5):

_	-			
Motore	Tensione	Comportamento di regolazione		
Iviolore		2 punti	3 punti	proporzionale
Elettrotermico	24V	101 28 16/26 101 29 16/26		101 29 51 (0-10V)
	230V	101 28 15/25/17 101 29 15/25		
	24V		101 27 08	101 27 05/06 (0-10V)
	230V	101 27 10	101 27 03	
Elettrico	EIB			115 60 65/66
	LON			115 70 65

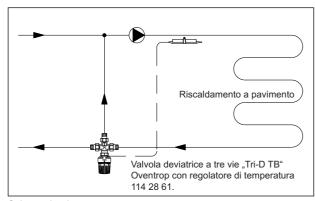

Se si impiega un regolatore costante, vengono utillizzati i regolatori di temperatura con sonda ad immersione Oventrop (Cod. Art.: da 114 05 61 fino a 114 05 74) o i regolatori con sonda a contatto (Cod. Art.: 114 28 61 fino 114 28 64). Questi sono regolatori proporzionali che lavorano senza ausilio di energia e consentono anche posizioni intermedie. Con l'aumentare della temperatura misurata dalla sonda, si chiude il passaggio diritto e si apre quello ad angolo.


Valvola deviatrice a tre vie "Tri-D TB"

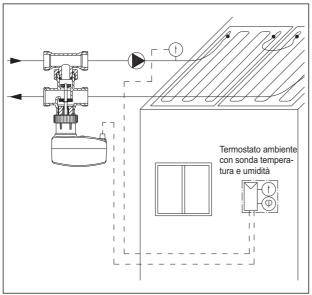
Dimensioni "Tri-D TB"



Dimensioni raccordo a T


Dimensioni "Tri-D plus TB"

2014 Oventrop 3.25-1


Schema impianto

Impiego in un impianto di riscaldamento con aerotermi. Viene regolata la temperatura d'uscita dell'aria dell'aerotermo.

Schema impianto

Regolazione di impianti di riscaldamento a pavimento. La temperatura di mandata del circuito a pavimento viene limitata sul valore preimpostato.

Schema impianto

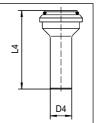
Regolazione di superfici radianti di raffrescamento

La temperatura di mandata del circuito di raffrescamento a soffitto con pannelli radianti viene regolata in base alla temperatura del punto di rugiada della stanza. L'adeguamento della temperatura di mandata dei pannelli di raffrescamento avviene senza interruzione del raffrescamento.

Salvo modifiche tecniche. Gruppo prodotti 3 ti 136-0/10/MW Edizione 2014

Accessori:

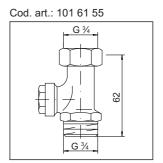
Un set comprende tre boccole e tre calotte

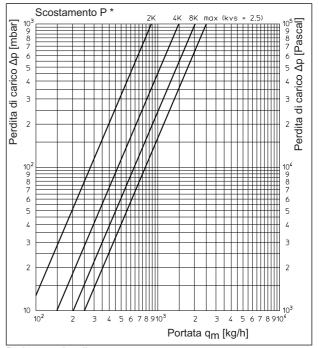

DN	D ₂	L ₂	Cod. art.:
15	12	22	114 01 91
15	15	22	114 01 92

Boccole a brasare

DN	DN D ₃ EN 10226		Cod. art.:
15	R ½	31,5	114 02 92

Boccole filettate


DN	D ₄	L ₄	Cod. art.:
15	10	41	114 03 90
15	12	45	114 03 91
15	15	47	114 03 92


Boccole ad innesto

Raccordi d'intercettazione

Cod. art.: 101 61 06

Dati prestazionali

* In combinazione con regolatori di temperatura Oventrop. I valori corrispondono alla portata del passaggio diritto I-II per gli scostamenti P indicati. Il valore kvs corrisponde alla portata in direzione I-II a valvola completamente aperta oppure in direzione I-III a valvola chiusa.

3.25-2 2014 Oventrop